- •Раздел 1 – Введение. Основные понятия и определения курса
- •Раздел 2 –Теоретические основы процессов химической технологии
- •Основы теории переноса. Основные понятия.
- •Конвективный механизм.
- •Турбулентный механизм.
- •Условие проявления и направления процессов переноса.
- •Уравнения переноса субстанций. Перенос массы. Молекулярный механизм переноса массы.
- •Конвективный механизм переноса массы.
- •Перенос энергии.
- •Конвективный механизм переноса энергии.
- •Турбулентный механизм переноса энергии.
- •Перенос импульса.
- •Молекулярный перенос импульса.
- •Закон сохранения массы
- •Интегральная форма зсм (материальный баланс)
- •Локальная форма зсм (уравнение неразрывности)
- •Закон сохранения энергии
- •Интегральная форма зсэ (первый закон термодинамики)
- •Локальная форма зсэ
- •Закон сохранения импульса (зси)
- •Интегральная форма зси
- •Локальная форма зси
- •Условия однозначности
- •Математическая формулировка условий однозначности
- •Поля скорости, давления, температуры, концентрации
- •Межфазный перенос субстанции.
- •Уравнения массо-, тепло-, импульсоотдачи. Локальная форма уравнений.
- •Моделирование химико-технологических процессов.
- •Математическое моделирование.
- •Физическое моделирование.
- •Теория подобия.
- •Подобие гидромеханических процессов.
- •Подобие тепловых процессов.
- •Подобие массообменных процессов.
- •Определение коэффициентов массо -, тепло -, импульсоотдачи.
- •Проблема масштабного перехода для промышленных аппаратов.
- •Гидродинамическая структура потоков.
- •Математическое моделирование структуры потоков.
- •2.4.2.1 Модель идеального вытеснения (мив).
- •Модель идеального смешения (мис).
- •Ячеечная модель (мя).
- •Диффузионная модель (мд).
- •Идентификация модели.
Уравнения переноса субстанций. Перенос массы. Молекулярный механизм переноса массы.
Рассмотрим
молекулярный перенос массы i-го
компонента в гомогенной смеси, который
называется молекулярной диффузией.
Направленное движение i-го
компонента возникает лишь в том случае,
если в среде имеется градиент
концентрации его молекул
.Тогда
поток
массы i-го
компонента может быть выражен:
,
(2.8)
Здесь Di- коэффициент диффузии.
Коэффициент диффузии Di зависит от динамических характеристик молекул (масса, потенциал взаимодействия), а также о давления и температуры системы. Коэффициент диффузии определяется, в основном, экспериментально. Коэффициент диффузии увеличивается с ростом температуры и уменьшения давления.
Знак “-“ свидетельствует о противоположной направленности векторов потока и градиента концентрации. Градиент концентрации направлен в сторону увеличения, а поток вещества – в сторону ее уменьшения.
Для изотермической системы:
(2.9)
Для случая многокомпонентной системы i-го компонента:
(2.10)
Здесь
матрица
коэффициентов многокомпонентной
диффузии.
Согласно
формуле (2.10), макроскопический поток
каждого компонента зависит от градиента
концентраций всех компонентов, а
определяется свойствами компонентов
среды.
Для
двух компонентной системы
вырождается в единственный коэффициент
бинарной (взаимной) диффузии.
и тогда:
(2.11)
Это соотношение называется первым законом Фика.
Конвективный механизм переноса массы.
Поток массы за счет конвективного механизма связан с конвективной скоростью :
(2.12)
В случае многокомпонентной среды можно рассмотреть поток массы для каждого компонента:
(2.13)
Здесь
i
– номер компонента,
плотность
компонента i.
Зачастую удобнее использовать поток
вещества,
а не массы:
(2.14)
Здесь
мольная масса компонента i,
мольная
концентрация.
Турбулентный механизм переноса массы.
Турбулентный перенос массы можно рассматривать по аналогии с молекулярным, как следствие хаотического перемещения вихрей. Вместо коэфицента молекулярной диффузии Dм вводится коэффициент турбулентной диффузии Dт и поток массы i-того компонента за счет турбулентной диффузии записывается в виде:
(2.15)
Если учесть, что молекулярная диффузия сохраняется и при турбулентной диффузии можно записать:
(2.16)
Поскольку объемы сред, участвующих в турбулентных пульсациях, значительно превышают молекулярные размеры, интенсивность турбулентного переноса массы в пристенной области существенно выше молекулярного.
DT/DM 102105
При конвективном движении среды поток массы (или вещества) определяется как сумма конвективного и молекулярного переноса, а при турбулентном режиме к ним добавляют и турбулентную составляющую.
