- •Назовите предмет изучения материаловедения и охарактеризуйте понятия «материалы», «вещество», «сырье» .
- •2. Охарактеризуйте физико-химическую природу материалов.
- •3. Охарактеризуйте агрегатные состояния вещества.
- •4. Определите особенности кристаллического строения вещества. Аморфные вещества.
- •5. Охарактеризуйте явление анизотропии кристаллов. Индексы Миллера.
- •6. Охарактеризуйте процесс кристаллизации веществ.
- •Охарактеризуйте явление полиморфизма. Приведите примеры аллотропических модификаций.
- •10. Назовите и поясните тепловые характеристики материалов.
- •13.Охарактеризуйте процесс коррозии, виды коррозии.
- •14.Опишите электрофизические характеристики материалов.
- •15.Объясните электрические свойства материалов согласно зонной теории твердого тела.
- •16.Приведите примеры классификации проводниковых материалов и опишите их.
- •17.Опишите электрические свойства проводниковых материалов.
- •18. Охарактеризуйте материалы с высокой проводимостью. Приведите примеры.
- •19. . Охарактеризуйте медь, как проводниковый материал, назовите недостатки
- •20. Назовите и охарактеризуйте сплавы на основе меди.
- •21. Опишите свойства алюминия и укажите недостатки алюминия в производстве имс.
- •22. Охарактеризуйте проволочные резистивные материалы.
- •23. Опишите особенности, требования применения пленочных резистивных материалов.
- •24.Охарактеризуйте явление поляризации, дайте определение диэлектрика и классификацию по явлениям вызывающим поляризацию.
- •25.Охарактеризуйте явление пробоя в диэлектрике, механизмы пробоя.
- •26. Охарактеризуйте газообразные диэлектрические материалы, определите область их применения.
- •27. Приведите примеры диэлектриков органического и природного происхождения, назовите область их применения.
- •28. Назовите области применения диэлектрических материалов в микроэлектронике и предъявляемые к ним требования.
15.Объясните электрические свойства материалов согласно зонной теории твердого тела.
В основе современной электронной теории твердых тел лежит зонная теория,объясняющая электрические свойства всех материалов, в том числе и ПП.В изолированном атоме энергия электрона определяется силой притяжения к ядру и силами отталкивания от других электронов. В кристалле энергии электронов изменяются : у одних увеличиваются , у других уменьшаются, так как возникают силы отталкивания между ядрами и между электронами соседних атомов и силы притяжения между всеми ядрами и всеми электронами. Если в изолированном атоме энергия каждого электрона соответствует определенному энергетическому уровню, то в кристалле эти энергетические уровни расщепляются в энергетические зоны, число уровней в которых равно числу атомов в твердом теле.
Ширина этих зон определяется природой атомов и структурой кристалла. Зона, соответствующая энергиям валентных электронов, называется валентной зоной. У ПП в валентной зоне находятся электроны, участвующие в ковалентных связях. При воздействии
внешних факторов (электрического поля, облучения светом, нагревания и т.д.) электроны валентной зоны приобретают дополнительную энергию, переходят на более высокие энергетические уровни и становятся электронами проводимости.
Совокупность энергетических уровней таких электронов образует зону проводимости или свободную зону, которая в отсутствие внешних факторов оказывается свободной, незаполненной электронами. Между валентной и свободной зонами находится запрещенная зона, т.е. промежуток значений энергии, которыми электрон в данном кристалле обладать не может
В зависимости от ширины запрещенной зоны ∆E , все материалы делятся на проводники ∆E<0,1 эВ, полупроводники ∆E=(0,1-3) эВ, и диэлектрики ∆E до 8эВ
I-эВ – энергия электрона, полученная им при перемещении между двумя точками электрического поля с разностью потенциалов 1 В).
16.Приведите примеры классификации проводниковых материалов и опишите их.
Проводниковые материалы обладают способностью проводить электрический ток и характеризуются весьма малым или заданным удельным электрическим сопротивлением ρ. К ним относятся и материалы с высоким сопротивлением, и сверхпроводниковые, и криопроводниковые материалы, у которых удельное электрическое сопротивление при очень низких температурах весьма мало.
По агрегатному состоянию проводниковые материалы разделяют на газообразные, жидкие и твердые.
К газообразным проводниковым материалам относят все газы и пары, и пары металлов. При достаточно малых значениях напряженности электрического поля Е они являются диэлектриками и обладают очень высоким удельным электрическим сопротивлением ρ. Однако при напряженности электрического поля, которая обеспечивает начало ионизации, газ может стать проводником, в котором перенос электрических зарядов осуществляется электронами и ионами. Если в единице объема сильно ионизированного газа наступает равенство между числом электронов и положительных ионов, то такой газ представляет собой особую проводящую среду, называемую плазмой.
Проводимость газов и паров используют в различных газоразрядных приборах.
К жидким проводникам относят расплавы металлов и растворы (в частности, водные) и расплавы солей, кислот и других веществ с ионным строением молекул.
Механизм прохождения электрического тока через твердые и жидкие металлы объясняется направленным движением свободных электронов под воздействием электрического тока, который создается внешним приложенным напряжением. Поэтому твердые и жидкие металлы называют проводниками с электронной (металлической) электропроводностью или проводниками первого рода.
Растворы и расплавы солей, кислот и щелочей, проводящие электрический ток, называют электролитами или проводниками второго рода. При прохождении электрического тока через электролит, в который погружены электроды, электрические заряды переносятся вместе с частицами молекул (ионами) электролита. На электродах происходит выделение веществ из раствора. Большинство металлов имеют высокую температуру плавления (вольфрам, молибден). Только ртуть и некоторые специальные сплавы (например, сплавы системы индий-галлий) могут быть использованы в качестве жидких проводников при нормальной температуре.
По характеру применения в радиоэлектронных приборах металлические материалы разделяют на материалы высокой проводимости (удельное электрическое сопротивление ρ≤0,1 мкОм·м) и материалы с высоким сопротивлением (удельное электрическое сопротивление ρ≥0,3 мкОм·м).
Материалы с высокой проводимостью (железо, медь, алюминий, золото, серебро и др.) используют как основу в контактных материалах и припоях, для изготовления проводов, микропроводов, проводящих покрытий и пленок, различных токопроводящих деталей, обкладок конденсаторов, тонкопленочных проводников и контактных площадок в ИМС, выводов радиоэлементов
Материалы с высоким сопротивлением используют в качестве резистивных материалов, материалов для нагревательных элементов и материалов для термопар. Наиболее известные сплавы с высоким сопротивлением: медно-марганцевые (манганины), медно-никелевые (константаны), сплавы никеля и хрома (нихромы).
Материалы с низким удельным электрическим сопротивлением ρ при очень низких температурах являются сверхпроводниками. Свойством сверхпроводимости обладают ртуть, алюминий, свинец, ниобий, соединения ниобия с оловом, титаном и др.
