- •Назовите предмет изучения материаловедения и охарактеризуйте понятия «материалы», «вещество», «сырье» .
- •2. Охарактеризуйте физико-химическую природу материалов.
- •3. Охарактеризуйте агрегатные состояния вещества.
- •4. Определите особенности кристаллического строения вещества. Аморфные вещества.
- •5. Охарактеризуйте явление анизотропии кристаллов. Индексы Миллера.
- •6. Охарактеризуйте процесс кристаллизации веществ.
- •Охарактеризуйте явление полиморфизма. Приведите примеры аллотропических модификаций.
- •10. Назовите и поясните тепловые характеристики материалов.
- •13.Охарактеризуйте процесс коррозии, виды коррозии.
- •14.Опишите электрофизические характеристики материалов.
- •15.Объясните электрические свойства материалов согласно зонной теории твердого тела.
- •16.Приведите примеры классификации проводниковых материалов и опишите их.
- •17.Опишите электрические свойства проводниковых материалов.
- •18. Охарактеризуйте материалы с высокой проводимостью. Приведите примеры.
- •19. . Охарактеризуйте медь, как проводниковый материал, назовите недостатки
- •20. Назовите и охарактеризуйте сплавы на основе меди.
- •21. Опишите свойства алюминия и укажите недостатки алюминия в производстве имс.
- •22. Охарактеризуйте проволочные резистивные материалы.
- •23. Опишите особенности, требования применения пленочных резистивных материалов.
- •24.Охарактеризуйте явление поляризации, дайте определение диэлектрика и классификацию по явлениям вызывающим поляризацию.
- •25.Охарактеризуйте явление пробоя в диэлектрике, механизмы пробоя.
- •26. Охарактеризуйте газообразные диэлектрические материалы, определите область их применения.
- •27. Приведите примеры диэлектриков органического и природного происхождения, назовите область их применения.
- •28. Назовите области применения диэлектрических материалов в микроэлектронике и предъявляемые к ним требования.
28. Назовите области применения диэлектрических материалов в микроэлектронике и предъявляемые к ним требования.
Применяются диэлектрические материалы в качестве изолирующих подложек для ГИС. Это такие материалы, как стекло, керамика (поликор-корундовая керамика), брокерит (бериллиевая керамика), сапфир, стекло (боросиликатное, алюмосиликатное). Твёрдые диэлектрики используются в качестве деталей корпусов (форстеритовая, стеатитовая керамика) – основания и крышка корпуса.
Все эти материалы должны обладать высокими электрофизическими свойствами .
Должны иметь :
-высокое удельное сопротивление и электрическую прочность;
-выдерживать механические нагрузки (удары, вибрацию);
-выдерживать
термоциклы от -60 до 150-200
С;
-поверхность, которая может подвергаться специальной обработке (шлифовке, полировке,
-химическому травлению для получения шероховатости рабочей поверхности 13-14класса);
-высокую теплопроводность;
-КТР должен быть близок к ТКР осаждаемых металлических пленок, выполняющие роль тонкопленочного проводника, обкладок конденсаторов, резисторов;
-химически
стойкими, инертными к осажденным
металлическим пленкам.
Так же неорганические стекла широко используются для создания герметичных вакуумноплотных спаев вывода с основанием корпуса. ТКЛР стекла должен соответствовать ТКЛР материалов вывода и основания корпуса.
Диэлектрические материалы могут применяться в виде диэлектрических пленок. Они могут выполнять следующие функции:
-изоляционное покрытие как внутри полупроводниковой пластины между элементами ИМС, так и на поверхности между тонкомлёночными проводниками и контактными площадками;
-диэлектрический слой в тонкопленочных конденсаторах в ГИС;
-маскирующий слой при внедрении легирующих примесей методами диффузии и ионной имплантации;
-пассивирующий (защитный) слой от внешних воздействий;
-подзатворный диэлектрик в МДП-структуре;
-геттер примесей и дефектов.
Для этих целей наибольшее применение находят диэлектрические пленки SiO2 и Si3N4, а в качестве пассивирующих защитных слоёв кроме SiO2могут использоваться боросиликатные БСС и фосфоросиликатные ФСС стекла, которые, в свою очередь, являются геттерами примесей и деффектов.
29. Дайте определение полупроводника и поясните названия донорный и акцепторный полупроводник.
Полупроводник – это вещество, у которого при комнатной температуре удельное электрическое сопротивление имеет промежуточное значение между проводником (10-9 – 10-6 Ом) и диэлектриком (108 – 1018 Ом) .
Полупроводниковый материал можно определить как вещество, основным свойством которого является сильная зависимость электропроводности от воздействия внешних факторов (температура, свет, электрическое и магнитное поля, потоки быстрых частиц, механические воздействия, примеси, дефекты структуры).
Акцепторный полупроводник (полупроводник n –типа проводимости) – полупроводник в котором концентрация электронов больше, чем дырок, и электроны являются основными носителями заряда, а дырки - неосновными.
Донорный полупроводник(полупроводник p –типа проводимости) – полупроводник в котором концентрация дырок больше, чем электронов, и дырки являются основными носителями заряда, а электроны – неосновными.
30. Опишите электропроводность полупроводников.
Электропроводность полупроводников делится:
1) Собственная
2) Примесная
Собственная электропроводность полупроводников возникает за счет разрыва собственных ковалентных связей. Ковалентная связь достаточно прочная и, чтобы ее разрушить, то есть освободить электрон, требуется энергия, не меньшая ширины запрещенной зоны Δ Е. Оторвавшийся от атома Si электрон под действием внешнего электрического поля становится электроном проводимости, а на его месте появляется положительно заряженная незаполненная связь с зарядом, равным заряду электрона. Эта электронная вакансия в кристалле полупроводника, фиктивная частица с массой электрона и единичным положительным зарядом, называется дыркой проводимости, так как дырку стремится заполнить электрон соседнего атома, и перемещение такого электрона условно считается движением дырки.
Полупроводник, в котором в результате разрыва ковалентных связей образуется равное количество свободных электронов (в зоне проводимости) и дырок (в валентной зоне) называется собственным полупроводником.
Обычно беспримесный, химически чистый полупроводние является собственным.
Собственная электропроводность такого полупроводника складывается из электронной σn и дырочной электропроводности σp:
σi = σn + σp,
σp –положительный;
σn –отрицательный.
Примесная электропроводность характерна для примесных полупроводников, свойства которых зависят от типа и количества введенной примеси. В примесных полупроводниках появляются дополнительные энергетические уровни в запрещенной зоне, которые соответствуют энергиям ионизации атомов примеси. Примесная электропроводность возникает за счет ионизации атомов примесей и обусловливается одним типом носителя заряда: или только электронами в электронном полупроводнике (n-тип проводимости), или только дырками в дырочном полупроводнике (р-тип проводимости).
Примесь в полупроводнике может замещать собственный атом в узле кристаллической решетки и характер электропроводности, которую эта примесь вызовет, определяется ее валентностью. Атомы примесей с большей валентностью (относительно валентности простого полупроводника) поставляют дополнительные свободные электроны и являются донорами, а атомы примесей с меньшей валентностью принимают электроны из валентной зоны, образуя дополнительные дырки, являются акцепторами.
31. Получение и основные характеристики кремния. Применение.
Кристаллический кремний имеет решетку типа алмаз. Каждый его атом соединен валентными связями с четырьмя соседними, расположенными в вершинах тетраэдра.
Кремний в отличие от Ge является одним из самых распространенных элементов в земной коре (29,5%), занимая второе место после кислорода. Кремний, как и Ge , темно-серого цвета, с металлическим блеском, твердый, хрупкий, хорошо шлифуется, полируется, но в отличие от Ge является легким веществом (плотность 2,33 г/см3).
Атомы в кристалле кремния расположены так просторно, а объем междоузельных пустот настолько велик (~75%), что при плавлении происходит не увеличение объема, как у всех металлов, а значительное, на 9%, его уменьшение.
Рыхлая, открытая структура и достаточно сильная ковалентная связь - особенности строения кремния, которые объясняют многие его физико-химические свойства, приведенные ниже.
1. Оптимальное значение ширины запрещенной зоны, которая обусловила достаточно низкую концентрацию собственных носителей и высокую рабочую температуру.
2. Большой диапазон реально достижимых удельных сопротивлений в пределах от 10-3 Ом∙см (вырожденный) до 1x 105 (близкий к собственному).
3. Высокое значение модуля упругости, значительная жесткость (большая, чем, например, у стали).
4. Оптимально высокая температура плавления, следующая из высокого значения модуля упругости и энергии связи (ТПЛ = 1412°С).
5. Малая плотность (2,3 г/см3) и низкий ТКЛР 3 10-6 К-1.
6. Высокая теплопроводность (до 80 Вт/К∙м, что близко к коэффициенту теплопроводности железа) .
7. Тензочувствительность - существенное изменение удельного сопротивления при упругой деформации.
8. Высокая растворимость примесей, причем примеси несильно искажают решетку кристалла.
Основной акцепторной примесью для Si является бор, так как обладает относительно малым коэффициентом диффузии в SiO2. Основной донорной примесью является фосфор, хотя SiO2 маскирует Si и от проникновения мышьяка As, сурьмы Sb. Но фосфор имеет в Si более высокий коэффициент диффузии, чем As и Sb и более высокую предельную растворимость, чем Sb.
Основными материалами для получения чистого кремния является галогены: тетрахлорид кремния SiCl4, моносилан SiH4. Чаще всего используют метод восстановления парами тетрахлорида кремния при температуре 1000 ◦С и метод термического разложения моносилана (пиролиз).
32. Получение и основные характеристики германия. Применение.
Содержание германия в земной коре невелико и составляет 7∙10- 4 %.
Не реагирует Ge с разбавленными и концентрированными кислотами, растворяется в смесях азотной и плавиковой кислот, в царской водке (смесь НN03 и HCl). В расплавленном состоянии не активен, не реагирует с кварцем, керамикой, не смачивает графит. Ge твердый, но хрупкий материал, легко раскалывается при ударе, изгибе. Германий не прозрачен для видимого света, а для ИК-лучей прозрачен при λ>1,8 мкм.
Из исходного сырья получают тетрахлорид германия GеСl4 и путем дальнейшей переработки – двуокись германия GeO2, из которого восстановлением водородной печи при температуре 650-700°С получают элементарный германий в виде серого порошка.
При Т> 600°С на воздухе Ge окисляется. Двуокись германия GeO2 легко растворяется в воде и не может выполнять те функция, что SiO2 на Si, поэтому планарные транзисторы на Ge выполняют при нанесении на его поверхность SiO2.
Легирование Ge , т.е. процесс контролируемого введения необходимой примеси, осуществляется в результате диффузии этих примесей. Температура диффузии (700-900)°С. Наибольшей скоростью диффузии обладают Au , Al, Sb , а наименьшей растворимостью - Al, Ga, P, As. Чаще всего для получения областей p-типа проводимости применяют акцепторы In , Ga , Al , а в качестве донорной примеси, т.е. для формирования областей n-типа проводимости - Sb и As.
Термообработка Ge может существенно изменять его электрические свойства. Если n-Ge нагреть до Т > 550°С, выдержать некоторое время, а затем быстро охладить (закалить), то изменится тип проводимости. Аналогичная термообработка для p-Ge приводит к снижению удельного сопротивления, без изменения типа проводимости.
Подвижность носителей заряда в слабо легированном Ge при комнатной температуре сравнительно высока . Это обусловливает его использование в ВЧ-диодах и транзисторах.
Области применения: НЧ- и ВЧ-транзисторы, мощные и маломощные, туннельные диоды, варикапы, точечные ВЧ, импульсные и СВЧ-диоды, датчики Холла, фототранзисторы, фотодиоды для ИК-лучей, счетчики ядерных частиц.
33. Приведите примеры полупроводников на основе химических соединений и охарактеризуйте их.
Эти соединения образуются на основе элементов III группы таблицы Д.И.Менделеева (В, Al, Ga, In) и элементов 5 группы - N, Р, As, Sb.
Изучение этих соединений ведется с 60-х годов XX века, и к настоящему времени наибольший интерес представляют: GaAs - арсенид галлия, GaP - фосфид галлия, InSb - антимонид индия, InAs - арсенид индия, InР - фосфид индия.
Освоение производства любого из соединений AIIIBV является сложной технологической задачей, так как этим соединениям присущ ряд недостатков.
1) Низкая растворимость легирующих примесей не более 1.1018 см-3 не обеспечивает достаточного уровня инжекции из эмиттерной области транзистора. Биполярные транзисторы на соединениях AIIIBV не эффективны из-за низкой подвижности дырок.
2) Отсутствие собственных оксидов на поверхности исключает возможность изготовления из соединений AIIIBV МОП-транзисторов. Единственной конструкцией полевого транзистора является транзистор на барьере Шотки (рисунок 3.16).
Рисунок
3.16
3) Токсичность реагентов AsCl3, AsH3, PH3, используемых для выращивания монокристаллов AIIIBV и эпитаксии в сочетании с взрывоопасностью водорода создает напряженную обстановку на производстве, требует повышенных мер безопасности, серьезно усложняет аппаратуру и технологию.
Образование в процессах обработки арсенидов и фосфидов,
вредных для окружающей среды отходов, требует необходимости их тщательного улавливания и обезвреживания. Например, при шлифовке фосфидов может образовываться чрезвычайно ядовитый газ - фосфин, а при растворении арсенидов в присутствии восстановителей - арсин.
4) Все фосфиды и арсениды при нагреве с большей или меньшей скоростью теряют летучие компоненты By - As или Р, т.е. являются разлагающимися по схеме:
АIII BV - АIII (Ж) + 1/2 В2 (газ).
Это создает трудности при проведении отжига, диффузии.
В области применения наиболее универсальным является арсенид галлия GaAs . Это один из основных материалов СВЧ-техники и оптоэлектроники (рисунок 3.17).
Арсенид галлия
СВЧ техника Оптоэлектроника
Рисунок 3.17
Арсенид галлия был первым ПП, на котором в 1962г. был создан
инжекционный лазер, т.е. осуществлена генерация когерентного излучения (одной длины волны) с помощью р-n перехода. Лазерный эффект возникает лишь в случае, если плотность тока через р-n переход превышает некоторое пороговое значение. На GaAs за счет электролюминесценции создаются светодиоды ИК-излучения, которые наиболее эффективны в оптронах и волоконно-оптических линиях связи. Светодиоды видимой области, обеспечивающие в информационных каналах связь аппаратуры с ее пользователями, изготовляются на фосфиде галлия GaP, имеющем ширину запрещенной зоны больше 1,7 эВ.
Широкозонные AIII BV (см. таблицу 3.2) являются материалами для СВЧ-техники, благодаря высокой подвижности электронов. ИМС на GaAs обладают большим быстродействием, чем ИМС на кремнии. Но технология ИМС на GaAs требует совершенствования техники эпитаксии, освоения технологии ионного легирования вместо диффузии, лазерного отжига вместо термического, электронно-лучевой литографии вместо фотолитографии и разработки новых методов осаждения защитных покрытий.
Узкозонные AIIIBV (InSb, InAs), обладающие высокой подвижностью электронов, служат для изготовления магниторезисторов и преобразователей Холла.
34. Приведите классификацию магнитных материалов и охарактеризуйте ферромагнетики.
По силе взаимодействия с магнитным полем все вещества разделяются на сильномагнитные и слабомагнитные. Если магнитная восприимчивость м « 1, то это слабомагнитные вещества. К ним относят диамагнетики и парамагнетики, антиферромагнетики.
Парамагнетики – эти материалы в магнитном поле усиливают его внутри себя из-за того, что направление намагниченности совпадает с направлением внешнего поля. Атомы (ионы) этих веществ обладают магнитным моментом, в отсутствии поля они дезориентированы тепловым движением, а при намагничивании эти магнитные моменты выстраиваются по направлению поля. К парамагнетикам относятся Al, Pt, Pd, Ca, Mg, Mn, Na, соли Fe, Ni, Co и др.
Диамагнетики характеризуются тем, что ослабляют внутри себя магнитное поле, которое действует извне, из-за того, что намагниченность направлена против внешнего поля. Диамагнетизм обусловлен небольшим изменением угловой скорости орбитального вращения e- при внесении атома в магнитное поле. В данном случае проявляется закон электромагнитной индукции. Электронную орбиту рассматривают как замкнутый контур, под действием внешнего поля в контуре изменяется сила тока и возникает дополнительный магнитный момент. По закону Ленца этот момент направлен навстречу внешнему полю. Магнитная восприимчивость м 0. К ним относятся Cu, Au, Ag, Pb, Zn, Hg, Ga и др. К диамагнетикам также относится ряд органических соединений. Диамагнетиками являются вещества в сверхпроводящем состоянии.
Антиферромагнетики – это кристаллические вещества, в которых магнитные моменты атомов (ионов) в соседних узлах кристаллической решетки ориентированны антипараллельно. Под действием внешнего магнитного поля антиферромагнетики приобретают слабую намагниченность. Повышение t до температуры, называемой точкой Нееля, приводит к потере намагниченности и переходу в парамагнитное состояние. Антиферромагнетики – Cr, NiF2, FeF2, NiO.
С точки зрения технического применения наибольший интерес представляют сильномагнитные вещества м » 1 (ферромагнетики и ферримагнетики).
Сильномагнитные вещества
Ферромагнетики характеризуются:
а) Способностью сильно намагничиваться даже в слабых полях (м = 103…104).
б) Выше определённой температуры (температуры Кюри Tк) ферромагнетики переходят в парамагнетики, т.е. магнитная восприимчивость снижается на 3-4 порядка.
К ферромагнетикам относят гадолиний (Tк=18С), железо (769С), кобальт (1131С), никель (358С).
Ферромагнетизм – магнитоупорядоченное состояние микроскопических объёмов вещества, в которых магнитные моменты атомов (ионов) параллельны и одинаково сориентированы. Эти объёмы (домены) обладают магнитным моментом даже при отсутствии внешнего намагничивающего поля (рисунок 5.1).
Если тело состоит из нескольких доменов, при образовании замыкающих доменов магнитный поток замкнут внутри тела, за его пределами магнитное поле равно нулю.
Деление образца на домены ограничивается энергией, затрачиваемой на образование границ между доменами. Линейный размер доменов имеет порядок от 10-2 до 10-5 см.
Рисунок 5.1 Рисунок 5.2
Доменная структура магнитных Основная кривая намагничивания материалов:1- Замыкающие домены ферромагнетика
2- Основные домены
Толщина доменной границы достигает нескольких сотен нанометров. При наложении внешнего магнитного поля происходит рост объёма доменов, которые имеют направление намагниченности, совпадающее или близкое к направлению напряжённости поля.
Зависимость магнитной индукции ферромагнитного вещества от напряженности внешнего поля называют кривой намагничивания, она имеет вид, показанный на рисунке 5.2. Кривую намагничивания ферромагнетиков можно разделить на несколько участков, которые характеризуются определенными процессами намагничивания. В области слабых полей (область /) магнитные восприимчивость и проницаемость не изменяются. Изменение магнитной индукции в этой области происходит в основном за счет обратимых процессов, которые обусловлены смещением границ доменов.
Кривая намагничивания в области // характеризуется тем, что здесь происходит неупругое смещение границ доменов, т. е. процесс не является обратимым. В области приближения к насыщению (область ///) изменение индукции объясняется в основном процессом вращения, когда направление вектора намагниченности самопроизвольных областей (доменов) приближается к направлению внешнего поля. Полная ориентация намагниченности по полю соответствует техническому насыщению. На последнем участке кривой (область IV) наблюдается слабый рост индукции с увеличением поля. Увеличение индукции происходит за счет роста намагниченности самого домена, т. е. ориентации спиновых моментов отдельных электронов, направление которых не совпадает с направлением внешнего поля вследствие дезориентирующего влияния теплового движения.
Магнитная проницаемость магнитных материалов растет с увеличением температуры и имеет максимум при температуре Кюри.
Если намагничивать ненамагниченный материал во внешнем магнитном поле, то индукция возрастает при непрерывном увеличении напряженности магнитного поля Н и достигает значения индукции насыщения Вs,. Если после этого уменьшить напряженность внешнего поля Н, то намагниченность уменьшится, но этому значению напряженности будет соответствовать уже другое, большее, значение индукции, чем при начальном намагничивании.
Это означает, что кривые В=f(H) при увеличении и уменьшении напряженности поля не тождественны вследствие явления гистерезиса. Магнитным гистерезисом называется явление отставания изменения магнитной индукции от вызывающей эти изменения напряженности магнитного поля (рисунок 5.4). При уменьшении Н до нуля в образце остается остаточная индукция Вг. Если направление поля изменить на противоположное и начать его увеличивать, то можно уменьшить индукцию до нуля. В этом случае значение Не называется коэрцитивной (задерживающей) силой.
Рисунок 5.4-Петля магнитного гистерезиса
Значение индукции насыщения определяется в поле Hs, которое принимается равным 5 Нс. Кривая изменения индукции при изменении напряженности внешнего магнитного поля от + Нс до — Нc и обратно называется предельной петлей гистерезиса, которая является важной характеристикой материала, на ее основе можно определить основные параметры материала — коэрцитивную силу Нc, индукцию насыщения Bs, остаточную индукцию Вr и др. По значению коэрцитивной силы материалы делятся на магнитомягкие (с малым значением Нс и большой магнитной проницаемостью) и магнитотвёрдые (с большой коэрцитивной силой). Для магнитотвёрдых материалов желательно, с точки зрения применения, чтобы площадь петли гистерезиса была как можно больше. Магнитотвёрдые материалы обладают широкой петлёй гистерезиса.
Процесс перемагничивания магнитных материалов в переменном магнитном поле связан с тепловыми потерями части энергии магнитного поля, что внешне проявляется в нагреве материала. Потери в магнитном материале характеризуются удельными магнитными потерями Руд или тангенсом угла магнитных потерь tgм.
По механизму возникновения различают потери на гистерезис и динамические. Потери на гистерезис связаны с явлением магнитного гистерезиса и с необратимым перемещением границ доменов. Они пропорциональны площади петли гистерезиса и частоте переменного поля. Мощность потерь, расходуемая на гистерезис, определяется следующей формулой:
Pr=Bmn f V (5.7)
где — коэффициент, зависящий от свойств материала; Вm - максимальная индукция в течение цикла; n=1,6…2,0 — показатель степени, принимающий значения в зависимости от В; f — частота; V — объем образца.
Динамические потери вызываются вихревыми токами и потерями на магнитное последействие или магнитной вязкостью, которые учитывают в слабых магнитных полях; они обусловлены отставанием магнитной индукции от изменения напряженности магнитного поля.
Потери на вихревые токи вызываются электрическими токами, которые магнитный поток индуцирует в магнитном материале; они зависят от электрического сопротивления магнитного материала. Увеличение сопротивления приводит к уменьшению потерь. Потери на вихревые токи пропорциональны квадрату частоты магнитного поля, поэтому применение магнитных материалов с низким электрическим сопротивлением имеет ограничение на высоких частотах. Мощность потерь на вихревые токи можно записать в виде:
P= 1,6f2h2Вmax2/Д (5.8)
где f – частота, h – толщина магнитного материала, - удельное электрическое сопротивление, Д—плотность материала.
Для работы в переменных магнитных полях используют материалы с узкой петлей гистерезиса, т. е. с очень малой коэрцитивной силой.
35. Дайте общую характеристику магнитомягким материалам. Достоинство, состав и применение ферритов.
Магнитомягкие материалы должны иметь высокую магнитную проницаемость, малую коэрцитивную силу, большую индукцию насыщения, узкую петлю гистерезиса, малые магнитные потери.
Магнитомягкие материалы можно разделить на следующие группы: технически чистое железо (низкоуглеродистая сталь); кремнистая электротехническая сталь; сплавы с высокой начальной магнитной проницаемостью (пермаллои); сплавы с большой индукцией насыщения (пермендюр); ферриты.
1 Журавлева Л.В. Электроматериаловедение./ Журавлева Л.В. – М.: Профобриздат, 20010.
2 Материаловедение. Технология конструкционных материалов/ Под ред. В.С. Чередниченко – М.: Омега-л, 2008.
3 Кадыкова Г.П. Материалы для производства изделий электронной техники./ Кадыкова Г.П. - М.: Высшая школа, 1987
4 Калинин Н.Н. Электрорадиоматериалы./ Калинин Н.Н., Скибинский Г.Л., Новиков П.П. - М.: Высшая школа, 1981.
5 Пасынков В.В. Материалы электронной техники/Пасынков В.В., Сорокин В.С. - СПб: Лань, 2001.
8 Достанко О.А. Материаловедение. Сплавы в электронное технике./Достанко О.А. - Мн.: МГВРК, 2003.
9 А.И. Курносов , Материалы. М.: Высш. шк., 1989.
10 Никифорова-Денисова, С.Н. Технология полупроводниковых приборов и изделий микроэлектроники. В 10 кн.: Учеб. пособие для ПТУ. Кн. 4. Механическая и химическая обработка / Никифорова-Денисова, С.Н. ‒ М.: Высш. шк., 1989.
