- •1. Анализ технического задания на курсовую работу, обоснование и
- •2.Обоснование и выбор функциональных узлов, разработка функциональной схемы устройства.
- •3. Разработка (составление) и расчет принципиальной схемы устройства.
- •3. Энергетический расчет
- •4.1.Расчет параметров функциональных узлов и элементов устройства.
- •5.Заключение по курсовой работе.
- •6.Список литературы
Содержание
Введение.
Анализ технического задания на курсовую работу, обоснование и разработка общей структурной схемы устройства.
Обоснование и выбор функциональных узлов, разработка функциональной схемы устройства.
Разработка (составление) и расчет принципиальной схемы устройства.
3.1 Выбор элементной базы и разработка принципиальной схемы устройства.
3.2 Энергетический расчет устройства.
4. Расчет параметров функциональных узлов и элементов устройства.
4.1 Составление модели устройства в среде Matlab\Simulink и определение параметров узлов и элементов.
4.2 Выбор силовых полупроводниковых приборов, модулей (СПП, СПМ) по результатам расчета.
5. Заключение по курсовой работе.
6. Список литературы.
7. Приложения.
7.1 Приложение 1.
7.2 Приложение 2
Введение
Для многих современных электронных устройств необходима энергия постоянного тока. Источниками постоянного тока могут служить гальванические элементы, аккумуляторы, генераторы постоянного тока, термоэлектогенераторы и выпрямители. Наиболее распространенным источником постоянного тока является выпрямитель. Выпрямителем называют устройство, предназначенное для преобразования энергии переменного тока в энергию постоянного тока. По сравнению с другими источниками постоянного тока выпрямители обладают существенными преимуществами: они просты в эксплуатации и надежны в работе, обладают высоким КПД, имеют длительный срок службы. Структурная схема выпрямителя приведена на рисунке:
рис.1
Трансформатор 1 предназначен для изменения питающего напряжения сети с целью получения заданной величины выпрямленного напряжения на нагрузке 4. С помощью выпрямителя 2 осуществляют преобразование переменного напряжения в пульсирующее. Фильтр 3 предназначен для сглаживания пульсаций выходного напряжения выпрямителя. В отдельных случаях могут отсутствовать некоторые звенья приведенной структурной схемы, за исключением основного элемента - выпрямителя. Например, выпрямитель может быть включен в сеть без трансформатора или работа выпрямителя на нагрузку осуществляется без фильтра. С другой стороны, очень часто в состав выпрямителя входит стабилизатор напряжения или тока (схема, которая отслеживает все изменения напряжения или тока со стороны входа и выхода и поддерживает постоянным напряжение или ток на нагрузке), который можно включать на выходе (по постоянному току) или на входе (по переменному току). Питание электронной аппаратуры чаще всего осуществляется с помощью маломощных выпрямителей, работающих от однофазной сети переменного тока. Такие выпрямители называются однофазными, но существует соответственно и ещё один класс – многофазных выпрямителей (с нулевым выводом, мостовые схема Ларионова).
Для питания мощных промышленных установок используют выпрямители средней и большой мощности, работающие от трехфазной сети. В современных выпрямителях в качестве вентилей чаще всего используются полупроводниковые диоды. В электронной аппаратуре широко применяются преобразователи постоянного напряжения, позволяющие преобразовать постоянный ток одного напряжения в постоянный или переменный ток другого напряжения.
1. Анализ технического задания на курсовую работу, обоснование и
разработка общей структурной схемы устройства.
Основной целью выполнения курсовой работы по дисциплине «Силовая электроника в системах управления и контроля» является приобретение практических навыков в выборе и расчете параметров полупроводниковых приборов и других компонентов силовых электронных устройств (СЭУ), самостоятельного решения задач по разработке и анализу (расчету) схем СЭУ. Курсовая работа предусматривает выбор и расчет силовых устройств на основе полупроводниковых приборов, а также разработку схем систем управления, защиты различных СЭУ и выбор элементов в соответствии с расчетными параметрами. В ходе выполнения курсовой работы мы рассмотрим трехфазный выпрямитель.
Наиболее распространены трёхфазный выпрямитель по схеме Миткевича В.Ф. (на трёх диодах), предложенный им в 1901 г., и трёхфазный выпрямитель по схеме Ларионова А.Н. (на шести диодах), предложенный им в 1923 г.. Менее известны трёхфазные выпрямители по схемам «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах) и другие, которые по многим параметрам превосходят и схему Миткевича и схему Ларионова. При этом требуются диоды со средним током через один диод почти вдвое меньшим, чем в схеме Ларионова.
Следует отметить, что выпрямитель Миткевича является четвертьмостовым параллельным, выпрямитель Ларионова является не полномостовым, как его часто считают, а полумостовым параллельным («три параллельных полумоста»). В зависимости от схемы включения трёхфазного трансформатора или трёхфазного генератора (звезда, треугольник) схема Ларионова имеет две разновидности: «звезда-Ларионов» и «треугольник-Ларионов», которые имеют разные напряжения, токи, внутренние сопротивления.
По схемам можно заметить, что схема Миткевича является недостроенной схемой Ларионова, а схема Ларионова является недостроенной схемой «три параллельных моста».
Из-за принципа обратимости электрических машин по этим же схемам строятся и преобразователи (инверторы).
2.Обоснование и выбор функциональных узлов, разработка функциональной схемы устройства.
Схема Ларионова.
Вентили 1,3,5 образуют катодную, а вентили 2,4,6 – анодную группы (рис.1). Из катодной группы ток пропускает тот вентиль, к аноду которого подводится большее положительное напряжение.
Следует отметить, что нумерация вентилей в данной схеме носит не случайный характер, а соответствует порядку их вступления в работу при условии соблюдения фазировки трансформатора (рис.2).
Рис. 1. Функциональная схема выпрямителя.
В любом промежутке времени должны быть включены два вентиля – один из катодной, а другой из анодной группы. Поочередная работа различных пар вентилей в схеме приводит к появлению на сопротивлении выпрямленного напряжения, состоящего из частей линейных напряжений вторичных обмоток трансформатора (ось 2 на рис.2) .
Из рис.2 (оси 1 и 2) видно, что моменты коммутации совпадают с моментами прохождения через нуль линейных напряжений (когда равны два фазных напряжения).
В промежутке (0-01) наибольшее положительное значение имеет напряжение , подаваемое к аноду вентиля 1, а наибольшее отрицательное значение – напряжение , подводимое к катоду вентиля 6. Следовательно, в этом промежутке одновременно включены вентили 1 и 6.
Через вентиль 1 положительное напряжение подводится к нижнему зажиму, а через вентиль 6 отрицательное напряжение подводится к верхнему зажиму сопротивления . Поэтому выпрямленное напряжение
Рис.2. Кривые токов и напряжения
В точке 01 напряжение , поэтому из анодной группы включается вентиль 2. Так как правее точки 01 напряжение имеет наибольшее отрицательное значение, вентиль 6 выключается. В промежутке (01-02) одновременно включены вентили 1 и 2 и выпрямленное напряжение
ud=ua-uc
Очевидно, что амплитуда выпрямленного напряжения
Ud.max=
E2
К каждому закрытому вентилю приложено линейное напряжение, поэтому амплитуда обратного напряжения
Uv.max= E2
Число пульсаций выпрямленного напряжения m=6
Постоянная
составляющая выпрямленного напряжения
(среднее значение)
вычисляется
для интервала повторяемости выпрямленного
напряжения, равного :
Ed
=
(1)
где E2– действующее значение фазного напряжения вторичных обмоток трансформатора.
Действующее значение тока вторичной обмотки (ось 6)
I2
=
, Id
=
(2)
Действующее значение тока первичной обмотки
(3)
Максимальное значение тока вентиля
Ivmax= Id (4)
Среднее значение тока вентиля
Iv
сред =
(5)
Действующее значение тока вентиля
Iv
=
(6)
