- •26) Волновые процессы в движениях человека
- •27)Механическая работа и энергия при движениях человека
- •28) Отстутствует!
- •29) Силы инерции и силы трения; роль в спортивной практике Сила инерции. Принцип д'Аламбера
- •30) Кинематические характеристики поступательного движения
- •31) Кинематические характеристики вращательного движения
- •32)Динамические характеристики поступательного движения
27)Механическая работа и энергия при движениях человека
Если на частицу подействовать силой F и переместить ее на расстояние s, то сила совершит работу A = Fs = F s cos(F;s) (угол (F;s) между направлением силы и перемещения рассматривается тогда, когда эти вектора не совпадают по направлению). Единицей измерения работы является Джоуль (в системе СИ) или киловатт-час.
Мощностью называется работа, совершаемая за единицу времени, или W=A/t =Fv. По последней формуле можно определить мощность коротких интенсивных движений (ударов по мячу, боксерских ударов и других ударных действий), когда механическую работу определить трудно, но можно измерить силу и скорость. Единица измерения мощности – ватт (Дж/с) (СИ) или лошадиная сила.
Если материальная точка находится в поле (гравитационном, электромагнитном), на нее действует сила F от этого поля, имеющая возможность совершать определенную работу. Этот запас работы, предопределяемый положением точки в поле, является ее потенциальной энергией. Принято считать, что если силы, действующие на материальную точку, совершают положительную работу, то ее потенциальная энергия убывает.
При рассмотрении деформируемого тела часто используют понятие «внутренней потенциальной энергии», которая равна работе деформации, взятой с обратным знаком.
Любое движущееся с поступательной скоростью v тело массой m обладает кинетической энергией, равной Ek=(1/2)mv2.
Аналогичную формулу можно записать для вращающегося с угловой скоростью w твердого тела с центром инерции J: Ekвр=(1/2) J w2.
Полная энергия движущегося тела равна сумме его потенциальной энергии и кинетической энергии в поступательном и вращательном движениях:
.
Если рассматриваем замкнутую систему, т.е. систему, а которую не оказывают влияние внешние силы, то для такой системы справедливо первое начало термодинамики: энергия в заданной замкнутой механической системе сохраняется. Иначе – это закон сохранения энергии.
Если на систему действуют внешние силы и она переходит из одного состояния в другое, то изменение полной механической энергии при этом переходе равно работе внешних сил. В деформируемых телах полная энергия равна сумме внутренней и кинетической энергий.
Переход одного вида механической энергии в другой называется рекуперацией механической энергии. Простой пример – вращение гимнаста на перекладине, когда вращательная кинетическая энергия переходит целиком в потенциальную в верхней точке и наоборот – в нижней.
Оценка энергетических показателей деятельности спортсмена осуществляется с использованием различного рода датчиков и тестов. С их помощью можно оценить физическое состояние спортсмена и уровень его потенциальных возможностей.
28) Отстутствует!
29) Силы инерции и силы трения; роль в спортивной практике Сила инерции. Принцип д'Аламбера
В ряде случаев возникает необходимость описать движение, покой или равновесие тела, находящегося в неинерциальной системе отсчета. Например, требуется выяснить какие проблемы могут возникнуть у человека, находящегося в кабине космического корабля. Французский физик Д'Аламбер сформулировал простой принцип, позволяющий отвечать на вопросы о поведении тела в неинерциальной системе. Рассмотрим тело, которое находится в неинерциальной системе, движущейся относительно инерциальной системы с ускорением ас.
Векторная величина, равная произведению массы тела на ускорение системы и направленная в сторону, противоположную ускорению системы, называется силой инерции:
Fи=-m·ac. (8.1)
Сила инерции не является реальной силой, так как она не действует со стороны какого либо тела. Однако в неинерциальной системе ее можно (и нужно!) рассматривать, как обычную силу. При этом можно «забыть» о том, что система неинерциальна.
Д'Аламбер установил, что если ко всем реальным силам (действующим со стороны других тел) добавить силу инерции, то в неинерциальной системе можно использовать все законы и формулы, которые справедливы для инерциальных систем.
Пример
Пусть тело массой т подвешено на нити в кабине космического корабля, который стартует с Земли и поднимается вверх с ускорением «а».
Система отсчета, связанная с таким кораблем является неинерционной и к ней применим принцип Д'Аламбера (ускорение системы — это ускорение корабля: ас = а). На тело действуют сила тяжести со стороны земли (mg) и сила натяжения нити (Т) (рис. 8.1). Добавим к ним силу инерции Fи = т·а, которая направлена вниз (в сторону, обратную ускорению). Теперь можно описать покой тела относительно корабля: Т + mg + Fи = 0. Учитывая направления сил, получим уравнение для их величин: Т — mg — Fи = 0. Откуда найдем натяжение нити, удерживающей тело:
Рис. 8.1. Использование силы инерции
Установлено, что сила инерции неотличима от силы гравитации (силы тяготения). В рассматриваемом примере это означает, что никакие опыты, поставленные внутри корабля, не смогут дать ответ на вопрос, какая из ситуаций имеет место:
• либо мы находимся не в корабле, а на какой-то планете, где ускорение свободного падения равно g + a;
• либо мы движемся с ускорением g + а на космическом корабле вдали от каких-либо планет (гравитационные силы отсутствуют);
• либо мы стартуем с Земли, поднимаясь с ускорением «а». Во всех этих случаях результаты любого опыта будут совершенно одинаковы.
