- •1.1.1 Способы повышения производительности ручной дуговой наплавки
- •Электродов
- •1.2 Наплавка под флюсом
- •1.3 Наплавка в защитном газе
- •Внутренний (Ar) потоки защитных газов; 5 – насадка;
- •Возбуждения, 4 – привод станка, 5 – наплавляемая деталь,
- •Управления, 9 – баллон с углекислотой и газовой аппаратурой
- •1.4 Электроимпульсная наплавка
- •Электродная проволока и растворы для наплавки
- •Соединений,0с
- •1.6 Плазменная наплавка
- •Наплавки с использованием твердого (а) и расплавленного (б) присадочного материала
- •Наплавка твч ценна там, где необходимо сохранить структуру и свойства карбидных крупинок, достичь минимального сплавления их с ме-таллом, выполняющим роль связки.
- •Изнашивания наплавленного металла закрепленным абразивом
- •Ударно-абразивного изнашивания наплавленного металла
- •Условий работы
- •2.2.3 Коррозионно-механическое изнашивание
- •Растрескивание под напряжением аустенитной коррозионностойкой стали
- •Влияние легирования и модифицирования на сопротивление абразивному разрушению при высокотемпературной коррозии
- •2.2.4 Кавитационно-эрозионное изнашивание
- •3 Особенности легирования, структурообразования. Типы и свойства наплавленного металла
- •3.1 Особенности легирования
- •При наплавке под флюсом
- •3.1.1 Наплавка легированной электродной проволокой или
- •3.1.2 Наплавка порошковой проволокой
- •Изобарного термодинамического потенциала в стандартных условиях z°, характеризующего сродство элементов к кислороду
- •3.1.4 Легирование нанесением примесей на наплавляемую
- •3.1.6 Выбор способа легирования
- •3.2 Структурообразование наплавленного металла
Электродная проволока и растворы для наплавки
Для наплавки деталей машин и механизмов применяется углероди-стая или легированная проволока разных марок диаметром от 1 до 3 мм. Марка проволоки выбирается, исходя из твердости наплавленного металла и способа его последующей механической обработки. При этом необходи-мо отметить, что с увеличением количества углерода, марганца, хрома, мо-либдена и других элементов твердость наплавленного металла значитель-но повышается и одновременно с этим повышается и склонность к трещинообразованию. При виброконтактной наплавке доля основного металла в наплавленном крайне мала, поэтому свойства последнего определяются маркой электродной проволоки. При наплавке проволокой, содержащей до 0,40 % углерода, в наплавленном металле не наблюдается трещин, хотя его твердость доходит до HRC 40...45. Если в проволоке находится до 0,60 % углерода, то твердость наплавленного металла доходит до HRC 55 и в наплавленном металле появляются трещины. То же наблюдается и при наплавке проволокой марки Св-18ХГСА. Диаметр электродной проволоки зависит от толщины наплавляемого слоя, мощности источника тока и конструкции головки наплавочного аппарата. При толщине наплавленного слоя до 1мм применяется проволока диаметром 1,6 мм; при толщине слоя до 2 мм – проволока диаметром 2,5 мм , а при толщине больше 2 мм – диаметром 2...3 мм. Источник питания дуги с рабочим напряжением до 12 В дает возможность применять проволоку диаметром до 2 мм. На такой диаметр проволоки рассчитано большинство наплавочных головок. От диаметра проволоки зависит режим наплавки, производительность работ, величина зоны термического влияния и остаточные внутренние напряжения.
Для наплавки рекомендуются разные водные растворы, хорошо ионизирующие зону наплавки, например: водный раствор, который со-держит 5 % кальцинированной соды, 1 % хозяйственного мыла и 0,5 % глицерина; водный 6-процентный раствор кальцинированной соды; вод-ный раствор, который содержит 3...4 % кальцинированной соды и 4...5 % глицерина или водный 30-процентный раствор глицерина. Последний дает лучшие результаты, чем другие растворы. Растворы являются охлаждающей жидкостью и, кроме того, оказывают содействие лучшему проведению процесса наплавки. Они также защищают расплавленный металл от воздуха. Расход жидкости влияет на скорость охлаждения наплавленного металла, на его твердость и образование в наплавленном слое трещин. Кроме того, от количества расходуемой жидкости зависит величина дефор-мации деталей, образование в наплавленном металле пор, защита металла сварочной ванны от влияния азота воздуха. Обычно при наплавке тонко-стенных деталей, изготовленных из низкоуглеродистых сталей, расход жидкости не превышает 3...5 л/мин. Наплавку деталей из среднеуглероди-стых и легированных сталей в некоторых случаях ведут без жидкости или с минимальной ее подачей, достаточной только для охлаждения мундшту-ка наплавочной головки.
1.5 Электрошлаковая наплавка
Электрошлаковый процесс открывает новые возможности производ-ства биметаллических изделий путем наплавки. Электрошлаковый про-цесс, как правило, сравнивается с методом принудительного формирова-ния. Схема процесса электрошлаковой наплавки приведена на рис. 1.20. В пространстве, образованном наплавляемой поверхностью 6 и формирую-щим устройством 5, образуется ванна расплавленного флюса-шлака 2, в которую непрерывно подается металлический электрод. Ток, проходя между электродом и наплавляемым изделием, нагревает расплавленный шлак и поддерживает высокую температуру иэлектропроводность.
В процессе расплавления флюса наплавляемые кромки нагреваются до температуры 800...1200°С и очищаются шлаком от окислов и окалины. Ниже шлаковой ванны образовывается металлическая ванна 3, которая после затвердевания, дает слой 4, прочно сплавленный с металлом изделия (основным металлом).
Рекомендуется использовать химически активные флюсы, содержа-щие фториды щелочных и щелочноземельных элементов. Силу тока под-держивают на уровне 1000...1200 А, напряжение – 25...30 В.
Рисунок 1.20 – Схема электрошлаковой наплавки
Формирующее устройство охлаждает поверхность металлической ванны и одновременно удерживает металлическую и шлаковую ванны. Процесс наплавки начинают на графитовых, медных или стальных подк-ладках. Формирующее устройство в виде охлаждаемого водой медного ползуна медленно перемещается наверх с помощью специального механиз-ма. Довольно важна поддержка постоянного уровня ванны расплавленного металла и ванны расплавленного шлака относительно ползуна.
Положение металлической ванны контролируется путем непрерыв-ного измерения напряжения между концом охлаждаемого щупа, вмонтиро-ванного в ползун, и зеркалом металлической ванны. Это напряжение рав-няется нулю, когда щуп касается металлической ванны, и растет по мере удаления щупа. Специальная схема автоматического регулирования управ-ляет скоростью перемещения ползуна и, таким образом, расстояние от щу-па до зеркала ванны поддерживается постоянной.
Глубина шлаковой ванны поддерживается в заданных границах стро-гим дозированием и постепенной подачей флюса. Применяемый при электрошлаковой наплавке флюс должен иметь сложный комплекс свойств, среди которых: вязкость, электропроводность. Зависимость электропроводности от температуры и температура кипения имеют особенно важное значение. Расход флюса при электрошлаковой наплавке обычно очень мал; в качестве электрода может быть использована проволока, лента, пластина, труба и др.
Процесс электрошлаковой наплавки можно осуществлять разными способами, зависящими прежде всего от типов электродов и методов их применения.
Из способов электрошлаковой наплавки, получивших более широкое применение, – наплавка одной электродной проволокой без колебаний; од-ной, двумя или тремя электродными проволоками с колебаниями; плавким мундштуком (неподвижная пластина с каналами для прохода проволок).
ЭШН электродными проволоками. Электрошлаковым способом электродными проволоками можно наплавлять плоские поверхности и тела вращения при вертикальном или горизонтальном расположении наплавля-емой поверхности. На рис. 1.21показана схема процесса ЭШН проволока –ми в вертикальном положении с помощью трех составных ползунов (вмес-то ползунов можно использовать подвижный кристаллизатор).
1 –наплавляемая заготовка; 2 –составной ползун; 3 – электроды
Рисунок 1.21 – ЭШН плоской поверхности в вертикальном положении с помощью составных ползунов
Наплавку производят в зазор, образуемый наплавляемой поверх-ностью заготовки и ползунами. Электроды при наплавке могут совершать возвратно-поступательное движение вдоль зазора. Скорость поперечных колебаний электрода должна быть такой, чтобы шлак не успевал затвер-деть до момента возвращения электрода в исходное положение. Процесс начинают на подкладке или в специальном кристаллизаторе. Режимы нап-лавки (количество электродов, ток, напряжение, скорость поперечного пе-ремещения электродов, глубина ванны и т.д.) устанавливают в зависи-мости от размеров наплавляемого слоя.
При ЭШН плоской поверхности электродными проволоками в горизонтальном положении для формирования наплавленного слоя используют неохлаждаемые медные пластины или водоохлаждаемые медные кристаллизаторы. Наплавку выполняют одним или несколькими электродами с поперечными колебаниями электродов или без них. Применение нескольких электродных проволок обеспечивает быструю стабилизацию электрошлакового процесса и высокое качество зоны сплавления и наплавленного слоя. К числу преимуществ этого процесса относят малую глубину проплавления основного металла.
Наплавку наружных цилиндрических поверхностей с относительно небольшой длиной образующей (200…300 мм) при вертикальном распо- ложении оси рекомендуют выполнять в стационарных кристаллизатоpax. Процесс начинают на графитовых или стальных подкладках. После разве-дения шлаковой ванны обеспечивают синхронное вращение заготовки и кристаллизатора; мундштуки, через которые подают проволоки, в процессе наплавки передвигают только вверх. Количество электродов и режимы наплавки выбирают в зависимости от диаметра заготовки и зазора.
Электрошлаковую наплавку цилиндрической заготовки большой длины можно производить, используя подвижной кристаллизатор, непод- вижную заготовку и электроды, которые вместе с мундштуками соверша-ют колебательные движения по окружности заготовки (рис.1.22).
1 –наплавляемая заготовка; 2 –электродная проволока,
3 –кристаллизатор; 4 –наплавленный слой; 5 –стартовая подкладка
Рисунок 1.22 – ЭШН цилиндрической наружной поверхности при
большой длине образующей
Такую технологию и технику наплавки применяли при восстановле-нии и упрочнении прокатных валков. Возможны другие варианты техноло- гии и техники ЭШН наружных цилиндрических поверхностей.
Схема ЭШН внутренней цилиндрической поверхности показана на рис. 1. 23.
1 – выводная втулка; 2 –медный охлаждаемый стержень;
3 –заготовка; 4 – электрод; 5 –шлаковая ванна;
6 – металлическая ванна; 7 –наплавленный слой
Рисунок 1.23 – Схема ЭШН внутренней цилиндрической поверхности
В процессе наплавки стержень-кристаллизатор и заготовка синх-ронно вращаются, а мундштуки, подающие проволоку, только поднимают-ся вверх по мере наплавки.
ЭШН электродными лентами (ЭШНЛ). Схема процесса электро-шлаковой наплавки одной электродной лентой при горизонтальном рас-положении наплавляемых поверхностей и свободном формировании нап-лавляемого металла приведена на рис. 1.24.
1 –электродная лента;2 –токоподвод; 3 –наплавленный металл;
4 –затвердевший металл; 5 –жидкий металл; 6 –флюс;
7 – основной металл
Рисунок 1.24 – Схема ЭШН одной электродной лентой
Флюс подают только с одной стороны – перед лентой, в направлении наплавки. Процесс, начинающийся как дуговой, быстро переходит в элект-рошлаковый. За лентой остается сварочная ванна, которая защищена слоем расплавленного шлака, и закристаллизовавшийся наплавленный металл, покрытый шлаковой коркой.
Основные преимущества ЭШНЛ – высокая производительность (22 кг/ч для ленты размерами 60x0,5 мм) при малом проплавлении основ-ного металла (5…10 %). Для ЭШНЛ необходимо применять флюсы системы CaF2-AI2O3-SiO2 (АН-72, АН-90) с повышенной электропроводностью в расплавленном состоянии. При ЭШНЛ лентой шириной более 80 мм проявляется отрицательное влияние магнитного дутья, сказывающееся на качестве зоны сплавления и формировании наплавленного металла. Для борьбы с этим явлением предложены методы магнитного управления процессом ЭШНЛ.
С использованием ЭШНЛ разработаны технологические процессы изготовления следующих деталей: коррозионностойких биметаллических листов общей толщиной 12…30 мм; слябов для последующей прокатки в биметаллические листы; корпусных деталей и узлов для атомного и химического машиностроения; прокатных валков, ножей горячей резки металла, роликов моталок и т.д.
ЭШН электродами большого сечениянаиболее эффективна в тех случаях, когда необходимо наплавить за относительно короткое время бо-льшиемассы металла слоями значительной толщины. Именно по этой при-чине получила распространение ЭШН электродами большого сечения в виде труб; квадратных, круглых, прямоугольных прутков и др.
В металлургической промышленности наплавку прокатных валков выполняли электродами-трубами (рис. 1.25).
1 –наплавляемый прокатный валок;
2 –кристаллизатор; 3 –электрод-труба; 4 –трансформатор;
5 –стартовое кольцо; 6 –наплавленный слой
Рисунок 1.25 – Схема наплавки прокатных валков электродом-трубой
Например, для наплавки стальных и чугунных прокатных валков го-рячей прокатки стана 300 использовали электроды-трубы диаметром 370 мм с толщиной стенки 15…20 мм из чугуна. Никаких дефектов в виде трещин, пор, неметаллических включений в наплавленном слое не обнару-жили. Отсутствие трещин при наплавке малопластичных материалов (чу-гунов) связано с особенностями кольцевой ЭШН, позволяющей сущест-венно уменьшить остаточные растягивающие напряжения, а в ряде случаев получать даже сжимающие напряжения в наплавленном слое.
Электродами большого сечения наплавляли заготовки для прокатки сортового и листового биметалла. При изготовлении некоторых быстро изнашивающихся деталей (лемехи плугов и культиваторов, рабочие орга-ны строительных и дорожных машин и т.д.) эффективно производить наплавку не в конце, а в начале, т.е наплавлять заготовки, из которых про-катывают соответствующие профили.
Схема npoцесса наплавки выглядит следующим образом (рис. 1.26). В наплавляемой заготовке (блюмсе) предварительно прострагивают или выфрезеровывают соответствующей формы паз. Затем этот паз заплавляют электрошлаковым способом, используя электроды квадратного, прямо-угольного или круглого сечений.
1 –наплавляемая деталь; 2 – формирующая пластина; 3 – датчик уровня;
4 –электрод; 5 –шлаковая ванна; 6 –ползун
Рисунок 1.26 – ЭШН заготовок под прокатку сортового биметалла с наклонным расположением наплавляемой поверхности
При наплавке электрод подают вертикально вниз; ползун, ограни-чивающий шлаковую и металлическую ванны, остается неподвижным, а блюмс, расположенный под углом 15…35° к горизонтали, перемещают вдоль оси наклона. После прокатки такой заготовки получают соответс-твующей формы профиль, из которого изготавливают биметаллические детали с расположением износостойкого плакирующего слоя в местах наи-
большего изнашивания.
По аналогичной технологии с использованием нескольких электро-дов, расположенных в ряд, наплавляют с одной или с двух сторон заготов-ки (слябы) для последующей прокатки на двух- или трехслойные корро-зионностойкие листы.
Способами ЭШН электродами большого сечения можно восстанав-ливать и упрочнять зубья ковшей экскаваторов, била дробилок различных типов, шарошки для роторного бурения шахтных стволов и т.п. Один из вариантов технологии восстановления и упрочнения зубьев ковшей экска-ваторов с помощью стыкошлаковой наплавки электродом большого сече-ния приведен на рис. 1.27. По этой технологии изношенный зуб 1,с при-варенным встык к его торцу расходуемым электродом 2из высокоизно-состойкого материала, подают вертикально в жидкую шлаковую ванну 3глубиной 50…60 мм, находящуюся в кристаллизаторе 4, воспроизводя-щем геометрию рабочей части зуба. После расплавления расходуемого электрода образуется металлическая ванна 5и одновременно формируется рабочая часть зуба, а после оплавления торца изношенного зуба послед-ний погружают в шлак и сплавляют с новой рабочей частью 6.
Рисунок 1.27 – Стыкошлаковая наплавка зубьев ковшей
экскаваторов
ЭШН зернистым присадочным материалом(ЗПМ). В принципе использовать ЗПМ можно во многих способах ЭШН, необходимо лишь со-ответствующее оборудование для его подачи. Однако наиболее успешно этот вид присадочного материала используют при наплавке в токоподво-дящем кристаллизаторе (ТПК), разработанном в ИЭС им. Е. О. Патона.
Схема электрошлаковой наплавки ЗПМ (дробью) в токоподводящем
кристаллизаторе показана на рис. 1.28.
1 –прокатный валок; 2 –шлаковая ванна; 3 –токоподводящий
кристаллизатор; 4 –металлическая ванна; 5 –наплавленный слой;
6 –дозатор с дробью
Рисунок 1.28 – ЭШН прокатных валков в токоподводящем
кристаллизаторе дробью
Электрическая цепь проходит от токоподводящей секции кристал-лизатора через шлаковую ванну к наплавляемой заготовке. Металлическая ванна образуется при расплавлении подаваемой в шлак дроби (стружки). Дробь можно подавать одним или несколькими стационарными дозато-рами, совершающими возвратно-вращательное движение по периметру кристаллизатора. В процессе наплавки металлическая ванна постепенно кристаллизуется, формируя наплавленный слой. При этом заготовка валка остается неподвижной, а кристаллизатор поднимается вверх (возможен вариант, когда кристаллизатор неподвижен, а заготовка вытягивается из него).
Производительность наплавки при использовании этого способа сос-тавляет от десятков до сотен килограммов наплавленного металла в час. Наиболее успешно этим способом наплавляли прокатные валки с гладкой бочкой.
Разработана технология ЭШН нерасходуемым электродом штам-повых кубиков с применением в качестве присадки стружки штамповой стали (рис. 1.29).
1 –поддон; 2 –изношенный штамп; 3 –кристаллизатор;4 – шлаковая ванна; 5 –графитовый нерасходуемый электрод;
6 –дозатор стружки; 7 –стружка; 8 –металлическая ванна
Рисунок 1.29 – ЭШН нерасходуемым электродом штамповых
кубиков
В кристаллизатор 3 на поддон 1 устанавливают изношенный штамп 2 и заливают его поверхность шлаком 4. В шлак подгружают графитовые электроды 5 и начинают электрошлаковый процесс. За счет теплоты, выде-ляемой в шлаковой ванне, расплавляют ручьи штампа. Затем в шлаковую ванну из бункера 6подают стружку 7 штамповой стали, которая по мере расплавления поступает в металлическую ванну 8подплавленного штампа. Эксплуатационные испытания показали, что стойкость наплавленных та-ким способом штампов в 1,5…4,0 раза выше стойкости штампов из кова-ного металла. Вместо стружки для наплавки штампов можно успешно ис-пользовать присадочный материал достаточно больших размеров (обрезки проката, отходы мелкого инструмента и т.п.).
ЭШН жидким присадочным металлом.Использование при ЭШН жидкого присадочного металла рационально по нескольким причинам: исключаются технологические операции по превращению жидкого металла в различного вида твердые присадки; можно наплавлять металл практически любого состава; благодаря отсутствию этапа плавления в шлаковой ванне твердой присадки значительно повышается скорость наплавки.
На рис. 1. 30 показана одна из схем электрошлакового процесса получения биметаллических заготовок путем заливки жидкогометалла на твердую подложку.
Рисунок1.30 – Схема получения многослойных заготовок заливкой жидкого металла на твердую подложку при ЭШН
Заготовку 1 устанавливают в кристаллизатор 2. Шлаком 4, находя-щимся в ковше 3, заливают поверхность заготовки и начинают электрош-лаковый процесс нерасходуемыми электродами 5, питающимися от тран-сформатора 6. После нагрева поверхности заготовки до требуемой темпе-ратуры на нее наливают металл 8 второго слоя из сталеразливочного ков-ша 7 и кристаллизуют его с применением электрошлакового процесса, по-лучая двухслойную заготовку 9. По этой технологии можно также восста-навливать изношенные по высоте штампы.
Значительные преимущества имеет ЭШН жидким присадочным металлом в токоподводящем кристаллизаторе (ТПК). При этом способе наплавки в шлаковую ванну, находящуюся в ТПК, порционно или постоянно подают жидкий присадочный металл.
Схема наплавки жидким присадочным металлом в ТПК показана на рис. 1.31. Конструкция кристаллизатора такая же, как и при использовании ЗПМ.
а –заливка жидкого шлака; б –заливка порции жидкого металла;
в –вытягивание наплавляемой заготовки; г – заливка очередной порции жидкого металла
1 –емкость для жидкого шлака; 2 –наплавляемая заготовка;
3 –кристаллизатор; 4 –жидкий шлак; 5 –емкость для жидкого металла;
6 –металлическая ванна; 7–наплавленный слой
Рисунок 1.31 – ЭШН жидким присадочным металлом в
токоподводящем кристаллизаторе
Технология ЭШН жидким присадочным металлом позволяет нап-лавлять наружные поверхности цилиндрических заготовок при толщине наплавленного слоя 20…100 мм и более. Технология обеспечивает высо-кую производительность, которая в зависимости от размеров наплавляе- мых деталей и применяемых материалов составляет от десятков до сотен килограммов наплавленного металла в час.
Отличительной особенностью электрошлакового процесса является его высокая стойкость при очень низкой плотности тока – от 0,1 А/мм2 и более.
Глубина провара основного металла при электрошлаковой наплавке зависит от многих факторов. Путем перемещения электрода или изделия (например, вращение цилиндрического изделия) можно достичь более рав-номерного распределения тепла в шлаковой ванне, чем при неподвижном электроде. Соответственно проплавление происходит на меньшую глубину и более равномерное. Но довольно тяжело обеспечить долю основного ме-талла в металле наплавки менее 20 %.
При неблагоприятных условиях – слишком малом объеме расплав-ленного шлака, чрезмерном повышении напряжения, малом зазоре и др. – возможен перегрев шлака и его закипание. Кипение шлаков снижает его электропроводность, ток падает, и в результате возникает возможность не-сплавления электродного металла с основным. Эта особенность процесса затрудняет получение наплавленного слоя толщиной менее 10...12 мм.
Особенностью электрошлакового способа является возможность по-лучения гладкой и ровной поверхности наплавленного металла и очень ма-лых припусков для обработки.
При электрошлаковой наплавке иногда применяют дополнительно присадочные металлические материалы, которые подаются в шлаковую ванную без тока. Это могут быть проволоки (порошковые или сплошного сечения), пластины, стержни, крупка, дробь со сварочной проволоки, чу-гунная дробь, лигатура и др. Они расплавляются за счет теплоты в шлаке и затем попадают в металлическую ванну, принимая участие в образовании шва или наплавленного слоя. Такой метод электрошлаковой наплавки применяют с целью повышения производительности и качества наплав-ленного металла или придания ему особых свойств.
Флюсы для электрошлаковой наплавки
К флюсам для электрошлаковой наплавки(см. табл. 4.14) предъявля-ются следующие требования:
– обеспечивать быстрое и легкое установление электрошлакового процесса и его стойкость при значительных колебаниях глубины и ширины шлаковой ванны и в широком диапазоне напряжений и сварочных токов;
– обеспечивать достаточное проплавление кромок основного метал-ла и самопроизвольное формирование поверхности шва без образования подрезов и наплывов;
– флюс не должен вытекать в зазоры между кромками и формирую-щими шов устройствами при обычной для производственных условий точности сборки, а также не должен отжимать ползун от наплавляемых кромок;
– образовывать шлаки, легко отделяемые от поверхности шва;
– оказывать содействие предотвращению пор и горячих трещин и предупреждать образование неметаллических включений в металле шва;
– обеспечивать необходимые санитарно-гигиенические условия ра-боты при его изготовлении и применении;
– быть технологичными при изготовлении в обычном флюсовом производстве и не содержать остродефицитных и дорогих материалов.
По химическому составу флюсы для ЭШН сплавов на основе железа можно разделить на следующие группы (см. табл. 4.16): низкокремнистые марганцевые (АН-8, АН-8М, АН-22 и др.), фторидные (АНФ-1, АНФ-5 и др.), оксидно-фторидные (АН-25, АНФ-6, АНФ-7, АН-72, АН-90, 48 ОФ-6 и др.).
Основными свойствами шлаков, от которых зависит эффективность электрошлакового процесса, являются электропроводность, вязкость, тем-пература плавления, смачиваемость, жидкотекучесть и стабильность сос-тава при наплавке.
Физические и технологические свойства шлаков при наплавке опре-деляются химическим составом и структурой сварочных флюсов. От них в значительной мере зависит стойкость электрошлакового процесса, произ-водительность наплавки.
Технологические свойства флюса для электрошлаковой наплавки оп-ределяются характером изменения электропроводности и вязкости шлака в зависимости от температуры.
Для устойчивого ведения электрошлакового процесса электропро-водность шлака должна находиться в определенных пределах. При высо-кой электропроводности возможно появление дуги между электродом и поверхностью шлака, при низкой – возможно нарушение или прекращение электрошлакового процесса. От электропроводности шлака зависит также количество выделяющейся в шлаковой ванне теплоты и, следовательно, энергоемкость процесса и величина проплавления основного металла. От этой характеристики шлака в значительной мере зависит режим наплавки. При низкой электропроводности необходимо использовать более высокое напряжение. Так, напряжение при ЭШН с использованием флюса АНФ-1 обычно составляет 25…30 В, а с флюсом АН-8 – около 45 В. Среди ок-сидно-фторидных и фторидных флюсов наибольшей электропроводностью обладают флюсы АНФ-1, АНФ-5, АНФ-7, наименьшей – АНФ-6. У флю-сов АНФ-28, АНФ-29 и АНФ-32 наблюдается peзкое увеличение элект-ропроводности при температурах 1700…18000С. Флюс АН-25 электропро-воден в твердом состоянии, он разработан для возбуждения электрошлако-вого процесса при «твердом» старте.
Флюсы существенным образом отличаются температурой начала плавления. Флюс АН-8 расплавляется при наиболее низкой температуре, дальше идут флюсы АН-8М, АН-22, АН348А, ФЦ-7. Наиболее тугоплав-кий – флюс АНФ-1, при его использованиивозникает наибольшая опас-ность отжимания формирующих ползунов и вытекание шлаковой ванны. Наилучшим для электрошлаковой наплавки с применением формирующих ползунов является флюс АН-8.
Чем ниже температура кипения флюса, тем меньшая устойчивость электрошлакового процесса и большая возможность перехода его в дуго-вой. Так как большинство флюсов, применяемых при электрошлаковой наплавке, сложны по химическому составу и структуре, то они кипят не при конкретной температуре, а в определенном диапазоне температур.
Для стабильности электрошлакового процесса важна температура начала кипения флюса, обусловленная наиболее летучим ее компонентом. В табл. 1.4 представлены данные о температуре плавления и кипения ряда соединений, которые могут быть в расплавленных флюсах.
Таблица 1.4 – Температуры плавления и кипения химических
