- •Предисловие
- •Введение
- •1Архитектура эвм
- •1.1 Биты и их хранение
- •1.1.1Вентили и триггеры
- •1.1.2Другие способы хранения битов
- •1.1.3Шестнадцатеричная система счисления
- •1.2 Оперативная память
- •1.2.1Структура памяти
- •1.2.2Измерение емкости памяти
- •1.3 Устройства хранения данных
- •1.3.1Магнитные диски
- •1.3.2Компакт-диски
- •1.3.3Магнитные ленты
- •1.3.4Хранение и поиск файлов
- •1.4 Представление информации в виде двоичного кода
- •1.4.1Представление текста
- •1.4.2Американский национальный институт стандартов
- •1.4.3Iso - международная организация по стандартизации
- •1.4.4Представление числовых значений
- •1.4.5Представление изображений
- •1.4.6Представление звука
- •1.5 Двоичная система счисления
- •1.5.1Альтернатива двоичной системе счисления
- •1.5.2Дроби в двоичной системе счисления
- •1.5.3Аналоговые и цифровые устройства
- •1.6 Хранение целых чисел
- •1.6.1Представление в двоичном дополнительном коде
- •1.6.2Сложение в двоичном дополнительном коде
- •1.6.3Проблема переполнения
- •1.6.4Представление с избытком
- •1.7 Хранение дробей
- •1.7.1Представление с плавающей точкой
- •1.7.2Ошибка усечения
- •1.8 Сжатие данных
- •1.8.1Общие методы сжатия данных
- •1.8.2Сжатие звука
- •1.8.3Сжатие изображений
- •1.9 Ошибки передачи данных
- •1.9.1Контрольный разряд четности
- •1.9.2Коды с исправлением ошибок
- •2Манипулирование данными
- •2.1 Архитектура эвм
- •2.1.1Сложение двух чисел, хранящихся в оперативной памяти
- •2.1.2Кто и что изобрел?
- •2.2 Машинный язык
- •2.2.1Система команд
- •2.2.2Кэш-память
- •2.2.3Арифметико-логические команды
- •2.2.4Команды управления
- •2.2.5Деление двух значений, хранящихся в памяти
- •2.3 Выполнение программы
- •2.3.1Пример выполнения программы
- •2.3.2Команды переменной длины
- •2.3.3Программы и данные
- •2.4 Арифметические и логические операции
- •2.4.1Логические операции
- •2.4.2Сравнение вычислительной мощности эвм
- •2.4.3Операции сдвига
- •2.4.4Арифметические операции
- •2.5 Связь с другими устройствами
- •2.5.1Связь через контроллер
- •2.5.2Строение шины
- •2.5.3Скорость передачи данных
- •2.6 Другие архитектуры
- •2.6.1Конвейерная обработка
- •3Операционные системы и организация сетей
- •3.13.1. Эволюция операционных систем
- •3.1.1Однопроцессорные системы
- •3.1.2Многопроцессорные системы
- •3.2 Архитектура операционной системы
- •3.2.1Программное обеспечение
- •3.2.2Полезное единообразие или вредная монополия?
- •3.2.3Компоненты операционной системы
- •3.2.4Операционная система linux
- •3.2.5Начало работы операционной системы
- •3.3 Координирование действий машины
- •3.3.1Понятие процесса
- •3.3.2Управление процессами
- •3.3.3Модель «клиент-сервер»
- •3.4 Обработка конкуренции между процессами
- •3.4.1Семафор
- •3.4.2Взаимная блокировка
- •3.5 Сети
- •3.5.1Основы организации сетей
- •3.5.2Интернет
- •3.5.3Топология сети Интернет
- •3.5.4Система адресов Интернета
- •3.5.5Электронная почта
- •3.5.6Всемирная паутина
- •3.6 Сетевые протоколы
- •3.6.1Управление правом отправки сообщений
- •3.6.2Сеть ethernet
- •3.6.3Javascript, апплеты, cgi и сервлеты
- •3.6.4Многоуровневый принцип программного обеспечения Интернета
- •3.6.5Комплект протоколов tcp/ip
- •3.6.6Протоколы рорз и imap
- •3.7 Безопасность
- •3.7.1Протокол защищенных сокетов
- •3.7.2Группа компьютерной «скорой помощи»
- •4Алгоритмы
- •4.1 Понятие алгоритма
- •4.1.1Предварительные замечания
- •4.1.2Формальное определение алгоритма
- •4.1.3Определение алгоритма
- •4.1.4Абстрактная природа алгоритма
- •4.2 Представление алгоритма
- •4.2.1Примитивы
- •4.2.2Псевдокод
- •4.3 Создание алгоритма
- •4.3.1Искусство решения задач
- •4.3.2Итеративные структуры в музыке
- •4.3.3Первый шаг в решении задачи
- •4.4 Итеративные структуры
- •4.4.1Алгоритм последовательного поиска
- •4.4.2Управление циклом
- •4.4.3Алгоритм сортировки методом вставок
- •4.5Рекурсивные структуры
- •4.5.1Поиск и сортировка
- •4.5.2Алгоритм двоичного поиска
- •4.5.3Управление рекурсивными структурами
- •4.6 Эффективность и правильность
- •4.6.1Эффективность алгоритма
- •4.6.2Проверка правильности программного обеспечения
- •4.6.3По ту сторону проверки правильности программ
- •5Языки программирования
- •5.1 Исторический обзор
- •5.1.1Ранние поколения
- •5.1.2Интерплатформенное программное обеспечение
- •5.1.3Независимость от машины
- •5.1.4Парадигмы программирования
- •5.2 Основные понятия традиционного программирования
- •5.2.1Культуры языков программирования
- •5.2.2Переменные и типы данных
- •5.2.3Структуры данных
- •5.2.4Константы и литералы
- •5.2.5Операторы присваивания
- •5.2.6Управляющие операторы
- •5.2.7Комментарии
- •5.3 Процедурные единицы
- •5.3.1Процедуры
- •5.3.2Событийно-управляемые программные системы
- •5.3.3Параметры
- •5.3.4Функции
- •5.3.5Операторы ввода-вывода
- •5.4 Реализация языка программирования
- •5.4.1Процесс трансляции программы
- •5.4.2Реализация java
- •5.4.3Компоновка и загрузка
- •5.4.4Пакеты разработки программного обеспечения
- •5.5 Объектно-ориентированное программирование
- •5.5.1Классы и объекты
- •5.5.3Конструкторы
- •5.5.4Дополнительные возможности
- •5.6 Параллельные операции
- •5.7 Декларативное программирование
- •5.7.1Логическая дедукция
- •5.7.2Язык программирования Prolog
- •6Разработка программного обеспечения
- •6.1 Разработка программного обеспечения
- •6.1.1Ассоциация по вычислительной технике
- •6.1.2Институт инженеров по электротехнике и электронике
- •6.2 Жизненный цикл программы
- •6.2.1Цикл как единое целое
- •6.2.2Разработка программного обеспечения на практике
- •6.2.3Этапы разработки программного обеспечения
- •6.2.4Анализ
- •6.2.5Проектирование
- •6.2.6Реализация
- •6.2.7Тестирование
- •6.2.8Современные тенденции
- •6.3 Модульность
- •6.3.1Модульная реализация программы
- •6.3.2Связь модулей системы
- •6.3.3Связность модуля
- •6.4 Методики проектирования
- •6.4.1Нисходящее и восходящее проектирование
- •6.4.2Модели проектирования
- •6.4.3Разработка открытых программных продуктов
- •6.5 Инструменты проектирования
- •6.6 Тестирование
- •6.7 Документация
- •6.8 Право собственности на программное обеспечение и ответственность
- •Часть 3 организация данных
- •7Структуры данных
- •7.1 Основы структур данных
- •7.1.1Опять абстракция
- •7.1.2Статические и динамические структуры
- •7.1.3Указатели
- •7.2 Массивы
- •7.3 Списки
- •7.3.1Непрерывные списки
- •7.3.2Реализация непрерывных списков
- •7.3.3Связные списки
- •7.3.4Поддержка абстрактного списка
- •7.4 Стеки
- •7.4.1Откат
- •7.4.2Реализация стека
- •7.5 Очереди
- •7.5.1Проблема указателей
- •7.6 Деревья
- •7.6.1Реализация дерева
- •7.6.2Сбор мусора
- •7.6.3Пакет бинарного дерева
- •7.7 Пользовательские типы данных
- •7.7.1Пользовательские типы
- •7.7.2Классы
- •7.7.3Описательное и процедурное знание
- •7.7.4Стандартная библиотека шаблонов
- •7.8 Указатели в машинном языке
- •8Файловые структуры
- •8.1 Роль операционной системы
- •8.1.1Таблицы размещения файлов
- •8.2 Последовательные файлы
- •8.2.1Обработка последовательных файлов
- •8.2.2Консорциум производителей программного обеспечения для www
- •8.2.3Текстовые файлы
- •8.2.4Текстовые и двоичные файлы
- •8.2.5Вопросы программирования
- •8.2.6Семантическая сеть
- •8.3 Индексация
- •8.3.1Основные положения индексации
- •8.3.2Вопросы программирования
- •8.3.3Расположение файлов на дисках
- •8.4 Хэширование
- •8.4.1Хэш-система
- •8.4.2Проблемы распределения
- •8.4.3Аутентификация посредством хэширования
- •8.4.4Вопросы программирования
- •9Структуры баз данных
- •9.1 Общие вопросы
- •9.2 Многоуровневый подход к реализации базы данных
- •9.2.1Система управления базой данных
- •9.2.2Распределенные базы данных
- •9.2.3Модели баз данных
- •9.3 Реляционная модель баз данных
- •9.3.1Вопросы реляционного проектирования
- •9.3.2Системы баз данных для персональных компьютеров
- •9.3.3Хронологические базы данных
- •9.3.4Реляционные операции
- •9.3.5Вопросы реализации
- •9.3.6Язык sql
- •9.4 Объектно-ориентированные базы данных
- •9.5 Поддержка целостности базы данных
- •9.5.1Пространственные базы данных
- •9.5.2Протоколы фиксации/отката изменений
- •9.5.3Блокировка
- •9.6 Воздействие технологий баз данных на общество
- •10Искусственный интеллект
- •10.1 Интеллект и машины
- •10.1.1Конечный результат или имитация
- •10.1.2Истоки искусственного интеллекта
- •10.1.3Тест Тьюринга
- •10.1.4Машина для решения головоломки из восьми фишек
- •10.2 Распознавание образов
- •10.3 Мышление
- •10.3.1Продукционные системы
- •10.3.2Интеллект, основанный на поведении
- •10.3.3Деревья поиска
- •10.3.4Эвристика
- •10.4 Искусственные нейронные сети
- •10.4.1Основные свойства
- •10.4.2Приложение теории
- •10.4.3Ассоциативная память
- •10.5 Генетические алгоритмы
- •10.6 Прочие области исследования
- •10.6.1Обработка лингвистической информации
- •10.6.2Рекурсия в естественных языках
- •10.6.3Роботы
- •10.6.4Системы баз данных
- •10.6.5Экспертные системы
- •10.7 Обдумывая последствия
- •10.7.1Сильный искусственный интеллект против слабого
- •11Теория вычислений
- •11.1 Функции и их вычисление
- •11.1.1Теория рекурсивных функций
- •11.2 Машины Тьюринга
- •11.2.1Основы машины Тьюринга
- •11.2.2Истоки машины Тьюринга
- •11.2.3Тезис Черча-Тьюринга
- •11.3 Универсальные языки программирования
- •11.3.1Скелетный язык
- •11.3.2Существуют ли инопланетяне?
- •11.3.3Универсальность скелетного языка
- •11.4 Невычислимая функция
- •11.4.1Проблема останова
- •11.4.2Неразрешимость проблемы останова
- •11.5 Сложность задач
- •11.5.1Измерение сложности задачи
- •11.5.2Пространственная сложность
- •11.5.3Полиномиальные и не полиномиальные задачи
- •11.5.5Детерминированность против недетерминированности
- •11.6Шифрование с открытым ключом
- •11.6.1Шифрование при помощи задачи о ранце
- •11.6.2Популярные системы шифрования
- •11.6.3Модульная арифметика
- •11.6.4Обратно к шифрованию
5.1.2Интерплатформенное программное обеспечение
Обычная прикладная программа при выполнении задач опирается на операционную систему. Ей могут потребоваться услуги устройства управления окнами, чтобы общаться с пользователем, или устройства управления файлами, чтобы считать данные с запоминающего устройства. К сожалению, обращение к этим устройствам в разных операционных системах осуществляется по-разному. Поэтому, если программы будут передаваться по сети и выполняться на машинах с разными операционными системами, они не должны зависеть от типа операционной системы и машины. Для таких программ используется термин «интерплатформенные». Таким образом, интерплатформенное программное обеспечение — это программное обеспечение, которое не зависит от используемой операционной системы и аппаратного обеспечения и, следовательно, может работать по всей сети.
Когда появились первые языки ассемблера, они казались гигантским шагом по направлению к более совершенным методам программирования. Многие считали, что они представляют совершенно новое поколение языков программирования. Со временем языки ассемблера стали называть языками второго поколения, языками же первого поколения являются сами машинные языки.
Хотя языки второго поколения и имели большое преимущество перед машинными языками, им все же не удалось стать окончательной средой программирования. Примитивы, которые использовались в языках ассемблера, в сущности, ничем не отличались от примитивов, применяемых в соответствующих машинных языках. Различие заключалось только в синтаксических структурах, использовавшихся для их представления. Поэтому программа, написанная на языке ассемблера, является машинно-зависимой, то есть команды программы выполняются в соответствии с характеристиками отдельной машины. Программу, написанную на языке ассемблера, нельзя перенести на машину с другой архитектурой. Для этого ее нужно переписать, чтобы она соответствовала конфигурации регистров и набору команд новой машины.
Другой недостаток языков ассемблера заключается в том, что хотя программисту и не приходится записывать команды в виде последовательности битов, он все-таки вынужден мыслить в небольших шагах машинного языка. Данная ситуация аналогична использованию при проектировании дома таких понятий, как доска, гвоздь, кирпич и т. д. Постройка дома, конечно, требует описания, основанного на этих элементарных составляющих, но процесс проектирования будет значительно проще, если использовать более крупные составляющие, такие как комната, окно, дверь и т. д.
Говоря проще, элементарные примитивы, из которых, в конце концов, строится продукт, не обязательно должны использоваться при разработке этого продукта. В процессе проектирования лучше применять примитивы более высокого уровня, каждый из которых представляет собой понятие, связанное с одной из главных характеристик продукта. По окончании проектирования эти примитивы можно перевести в понятия более низкого уровня, имеющие отношение к деталям выполнения.
Следуя этим принципам, специалисты в области вычислительной техники начали разрабатывать языки программирования, более подходящие для создания программного обеспечения, чем языки ассемблера. В результате возникли языки программирования третьего поколения, которые отличались от своих предшественников тем, что в них использовались машинно-независимые примитивы высокого уровня. Известным примерами таких языков являются FORTRAN (FORmula TRANslator), разработанный для создания научных и инженерных прикладных программ, и COBOL (COmmon Business Oriented Language — язык программирования для промышленных и правительственных учреждений), созданный военно-морским ведомством США для прикладных программ в бизнесе. Главным при разработке языков третьего поколения было создание набора примитивов высокого уровня, с помощью которых можно создавать программное обеспечение. Каждый из примитивов был построен так, что его можно выполнить как последовательность примитивов низкого уровня, входящих в машинный язык. Например, утверждение
присвоить переменной GrossWhite значение (VenichleWeight + LoadWeight)
выражает сложные действия, не описывая подробно, как отдельная машина должна
выполнять задачу. Следовательно, структура нашего псевдокода
идентификатор <— выражение
является потенциальным примитивом высокого уровня.
После определения набора примитивов была написана программа, преобразующая программу, записанную с помощью этих примитивов, в программу на машинном языке. Такая программа называется транслятором (translator). Трансляторы были очень похожи на ассемблеры второго поколения, только им приходилось объединять несколько машинных команд в короткие последовательности, чтобы имитировать действия, выраженные одним примитивом высокого уровня. Такие транслирующие программы часто называют компиляторами (compilers).
Разработка первой компилирующей программы приписывается Грейс Хоппер (Grace Hopper), которая также способствовала более широкому распространению понятия языков программирования третьего уровня. Эта задача не так проста, как может показаться. Идея записывать программы в форме, близкой к естественному языку, была настолько неожиданной и революционной, что многие чиновники сначала не приняли ее. Грейс Хоппер показала транслирующую программу для языка третьего поколения, в котором использовались не английские слова, а немецкие. Суть заключалась в том, что язык программирования состоял из небольшого набора примитивов, которые можно было записать на большом количестве естественных языков, при этом в транслирующую программу нужно было ввести только несколько простых изменений. Но она была очень удивлена, узнав, что многие из зрителей были возмущены тем, что в после второй мировой войны она собирается учить компьютеры понимать немецкий язык. Сегодня мы знаем, что понимать естественный язык — это гораздо больше, чем просто реагировать на несколько строго определенных примитивов.
Альтернативой трансляторам являются интерпретирующие программы или интерпретаторы (interpreters), возникшие как другой способ выполнения программ, написанных на языках третьего поколения. Эти программы очень похожи на трансляторы за исключением того, что они выполняют программу по мере ее ввода и не записывают транслируемую программу для последующего выполнения.
То есть интерпретатор выполняет1 команды, как только они получены, а не создает копию программы, записанную на машинном языке, чтобы выполнить ее позже.
