- •Предисловие
- •Введение
- •1Архитектура эвм
- •1.1 Биты и их хранение
- •1.1.1Вентили и триггеры
- •1.1.2Другие способы хранения битов
- •1.1.3Шестнадцатеричная система счисления
- •1.2 Оперативная память
- •1.2.1Структура памяти
- •1.2.2Измерение емкости памяти
- •1.3 Устройства хранения данных
- •1.3.1Магнитные диски
- •1.3.2Компакт-диски
- •1.3.3Магнитные ленты
- •1.3.4Хранение и поиск файлов
- •1.4 Представление информации в виде двоичного кода
- •1.4.1Представление текста
- •1.4.2Американский национальный институт стандартов
- •1.4.3Iso - международная организация по стандартизации
- •1.4.4Представление числовых значений
- •1.4.5Представление изображений
- •1.4.6Представление звука
- •1.5 Двоичная система счисления
- •1.5.1Альтернатива двоичной системе счисления
- •1.5.2Дроби в двоичной системе счисления
- •1.5.3Аналоговые и цифровые устройства
- •1.6 Хранение целых чисел
- •1.6.1Представление в двоичном дополнительном коде
- •1.6.2Сложение в двоичном дополнительном коде
- •1.6.3Проблема переполнения
- •1.6.4Представление с избытком
- •1.7 Хранение дробей
- •1.7.1Представление с плавающей точкой
- •1.7.2Ошибка усечения
- •1.8 Сжатие данных
- •1.8.1Общие методы сжатия данных
- •1.8.2Сжатие звука
- •1.8.3Сжатие изображений
- •1.9 Ошибки передачи данных
- •1.9.1Контрольный разряд четности
- •1.9.2Коды с исправлением ошибок
- •2Манипулирование данными
- •2.1 Архитектура эвм
- •2.1.1Сложение двух чисел, хранящихся в оперативной памяти
- •2.1.2Кто и что изобрел?
- •2.2 Машинный язык
- •2.2.1Система команд
- •2.2.2Кэш-память
- •2.2.3Арифметико-логические команды
- •2.2.4Команды управления
- •2.2.5Деление двух значений, хранящихся в памяти
- •2.3 Выполнение программы
- •2.3.1Пример выполнения программы
- •2.3.2Команды переменной длины
- •2.3.3Программы и данные
- •2.4 Арифметические и логические операции
- •2.4.1Логические операции
- •2.4.2Сравнение вычислительной мощности эвм
- •2.4.3Операции сдвига
- •2.4.4Арифметические операции
- •2.5 Связь с другими устройствами
- •2.5.1Связь через контроллер
- •2.5.2Строение шины
- •2.5.3Скорость передачи данных
- •2.6 Другие архитектуры
- •2.6.1Конвейерная обработка
- •3Операционные системы и организация сетей
- •3.13.1. Эволюция операционных систем
- •3.1.1Однопроцессорные системы
- •3.1.2Многопроцессорные системы
- •3.2 Архитектура операционной системы
- •3.2.1Программное обеспечение
- •3.2.2Полезное единообразие или вредная монополия?
- •3.2.3Компоненты операционной системы
- •3.2.4Операционная система linux
- •3.2.5Начало работы операционной системы
- •3.3 Координирование действий машины
- •3.3.1Понятие процесса
- •3.3.2Управление процессами
- •3.3.3Модель «клиент-сервер»
- •3.4 Обработка конкуренции между процессами
- •3.4.1Семафор
- •3.4.2Взаимная блокировка
- •3.5 Сети
- •3.5.1Основы организации сетей
- •3.5.2Интернет
- •3.5.3Топология сети Интернет
- •3.5.4Система адресов Интернета
- •3.5.5Электронная почта
- •3.5.6Всемирная паутина
- •3.6 Сетевые протоколы
- •3.6.1Управление правом отправки сообщений
- •3.6.2Сеть ethernet
- •3.6.3Javascript, апплеты, cgi и сервлеты
- •3.6.4Многоуровневый принцип программного обеспечения Интернета
- •3.6.5Комплект протоколов tcp/ip
- •3.6.6Протоколы рорз и imap
- •3.7 Безопасность
- •3.7.1Протокол защищенных сокетов
- •3.7.2Группа компьютерной «скорой помощи»
- •4Алгоритмы
- •4.1 Понятие алгоритма
- •4.1.1Предварительные замечания
- •4.1.2Формальное определение алгоритма
- •4.1.3Определение алгоритма
- •4.1.4Абстрактная природа алгоритма
- •4.2 Представление алгоритма
- •4.2.1Примитивы
- •4.2.2Псевдокод
- •4.3 Создание алгоритма
- •4.3.1Искусство решения задач
- •4.3.2Итеративные структуры в музыке
- •4.3.3Первый шаг в решении задачи
- •4.4 Итеративные структуры
- •4.4.1Алгоритм последовательного поиска
- •4.4.2Управление циклом
- •4.4.3Алгоритм сортировки методом вставок
- •4.5Рекурсивные структуры
- •4.5.1Поиск и сортировка
- •4.5.2Алгоритм двоичного поиска
- •4.5.3Управление рекурсивными структурами
- •4.6 Эффективность и правильность
- •4.6.1Эффективность алгоритма
- •4.6.2Проверка правильности программного обеспечения
- •4.6.3По ту сторону проверки правильности программ
- •5Языки программирования
- •5.1 Исторический обзор
- •5.1.1Ранние поколения
- •5.1.2Интерплатформенное программное обеспечение
- •5.1.3Независимость от машины
- •5.1.4Парадигмы программирования
- •5.2 Основные понятия традиционного программирования
- •5.2.1Культуры языков программирования
- •5.2.2Переменные и типы данных
- •5.2.3Структуры данных
- •5.2.4Константы и литералы
- •5.2.5Операторы присваивания
- •5.2.6Управляющие операторы
- •5.2.7Комментарии
- •5.3 Процедурные единицы
- •5.3.1Процедуры
- •5.3.2Событийно-управляемые программные системы
- •5.3.3Параметры
- •5.3.4Функции
- •5.3.5Операторы ввода-вывода
- •5.4 Реализация языка программирования
- •5.4.1Процесс трансляции программы
- •5.4.2Реализация java
- •5.4.3Компоновка и загрузка
- •5.4.4Пакеты разработки программного обеспечения
- •5.5 Объектно-ориентированное программирование
- •5.5.1Классы и объекты
- •5.5.3Конструкторы
- •5.5.4Дополнительные возможности
- •5.6 Параллельные операции
- •5.7 Декларативное программирование
- •5.7.1Логическая дедукция
- •5.7.2Язык программирования Prolog
- •6Разработка программного обеспечения
- •6.1 Разработка программного обеспечения
- •6.1.1Ассоциация по вычислительной технике
- •6.1.2Институт инженеров по электротехнике и электронике
- •6.2 Жизненный цикл программы
- •6.2.1Цикл как единое целое
- •6.2.2Разработка программного обеспечения на практике
- •6.2.3Этапы разработки программного обеспечения
- •6.2.4Анализ
- •6.2.5Проектирование
- •6.2.6Реализация
- •6.2.7Тестирование
- •6.2.8Современные тенденции
- •6.3 Модульность
- •6.3.1Модульная реализация программы
- •6.3.2Связь модулей системы
- •6.3.3Связность модуля
- •6.4 Методики проектирования
- •6.4.1Нисходящее и восходящее проектирование
- •6.4.2Модели проектирования
- •6.4.3Разработка открытых программных продуктов
- •6.5 Инструменты проектирования
- •6.6 Тестирование
- •6.7 Документация
- •6.8 Право собственности на программное обеспечение и ответственность
- •Часть 3 организация данных
- •7Структуры данных
- •7.1 Основы структур данных
- •7.1.1Опять абстракция
- •7.1.2Статические и динамические структуры
- •7.1.3Указатели
- •7.2 Массивы
- •7.3 Списки
- •7.3.1Непрерывные списки
- •7.3.2Реализация непрерывных списков
- •7.3.3Связные списки
- •7.3.4Поддержка абстрактного списка
- •7.4 Стеки
- •7.4.1Откат
- •7.4.2Реализация стека
- •7.5 Очереди
- •7.5.1Проблема указателей
- •7.6 Деревья
- •7.6.1Реализация дерева
- •7.6.2Сбор мусора
- •7.6.3Пакет бинарного дерева
- •7.7 Пользовательские типы данных
- •7.7.1Пользовательские типы
- •7.7.2Классы
- •7.7.3Описательное и процедурное знание
- •7.7.4Стандартная библиотека шаблонов
- •7.8 Указатели в машинном языке
- •8Файловые структуры
- •8.1 Роль операционной системы
- •8.1.1Таблицы размещения файлов
- •8.2 Последовательные файлы
- •8.2.1Обработка последовательных файлов
- •8.2.2Консорциум производителей программного обеспечения для www
- •8.2.3Текстовые файлы
- •8.2.4Текстовые и двоичные файлы
- •8.2.5Вопросы программирования
- •8.2.6Семантическая сеть
- •8.3 Индексация
- •8.3.1Основные положения индексации
- •8.3.2Вопросы программирования
- •8.3.3Расположение файлов на дисках
- •8.4 Хэширование
- •8.4.1Хэш-система
- •8.4.2Проблемы распределения
- •8.4.3Аутентификация посредством хэширования
- •8.4.4Вопросы программирования
- •9Структуры баз данных
- •9.1 Общие вопросы
- •9.2 Многоуровневый подход к реализации базы данных
- •9.2.1Система управления базой данных
- •9.2.2Распределенные базы данных
- •9.2.3Модели баз данных
- •9.3 Реляционная модель баз данных
- •9.3.1Вопросы реляционного проектирования
- •9.3.2Системы баз данных для персональных компьютеров
- •9.3.3Хронологические базы данных
- •9.3.4Реляционные операции
- •9.3.5Вопросы реализации
- •9.3.6Язык sql
- •9.4 Объектно-ориентированные базы данных
- •9.5 Поддержка целостности базы данных
- •9.5.1Пространственные базы данных
- •9.5.2Протоколы фиксации/отката изменений
- •9.5.3Блокировка
- •9.6 Воздействие технологий баз данных на общество
- •10Искусственный интеллект
- •10.1 Интеллект и машины
- •10.1.1Конечный результат или имитация
- •10.1.2Истоки искусственного интеллекта
- •10.1.3Тест Тьюринга
- •10.1.4Машина для решения головоломки из восьми фишек
- •10.2 Распознавание образов
- •10.3 Мышление
- •10.3.1Продукционные системы
- •10.3.2Интеллект, основанный на поведении
- •10.3.3Деревья поиска
- •10.3.4Эвристика
- •10.4 Искусственные нейронные сети
- •10.4.1Основные свойства
- •10.4.2Приложение теории
- •10.4.3Ассоциативная память
- •10.5 Генетические алгоритмы
- •10.6 Прочие области исследования
- •10.6.1Обработка лингвистической информации
- •10.6.2Рекурсия в естественных языках
- •10.6.3Роботы
- •10.6.4Системы баз данных
- •10.6.5Экспертные системы
- •10.7 Обдумывая последствия
- •10.7.1Сильный искусственный интеллект против слабого
- •11Теория вычислений
- •11.1 Функции и их вычисление
- •11.1.1Теория рекурсивных функций
- •11.2 Машины Тьюринга
- •11.2.1Основы машины Тьюринга
- •11.2.2Истоки машины Тьюринга
- •11.2.3Тезис Черча-Тьюринга
- •11.3 Универсальные языки программирования
- •11.3.1Скелетный язык
- •11.3.2Существуют ли инопланетяне?
- •11.3.3Универсальность скелетного языка
- •11.4 Невычислимая функция
- •11.4.1Проблема останова
- •11.4.2Неразрешимость проблемы останова
- •11.5 Сложность задач
- •11.5.1Измерение сложности задачи
- •11.5.2Пространственная сложность
- •11.5.3Полиномиальные и не полиномиальные задачи
- •11.5.5Детерминированность против недетерминированности
- •11.6Шифрование с открытым ключом
- •11.6.1Шифрование при помощи задачи о ранце
- •11.6.2Популярные системы шифрования
- •11.6.3Модульная арифметика
- •11.6.4Обратно к шифрованию
4.4.3Алгоритм сортировки методом вставок
В качестве дополнительного примера итеративных структур рассмотрим задачу сортировки в алфавитном порядке списка имен. Прежде чем продолжить, следует определить условия нашей работы. Проще говоря, наша цель состоит в том, чтобы упорядочить список «сам в себе», то есть нам нужно перетасовать элементы списка, не перемещая список в другое место. Наша задача аналогична задаче упорядочивания списка, элементы которого записаны на отдельных учетных карточках, разбросанных на переполненном столе. Мы расчистили достаточно места для карточек, но нам не разрешается двигать другие документы, чтобы освободить дополнительное пространство. Такое ограничение является обычным в компьютерных прикладных задачах, не из-за того, что рабочее пространство машины переполнено, как наш стол, а потому что мы хотим эффективно использовать доступную область памяти.
Начнем решение задачи с обсуждения того, как можно упорядочить карточки с именами, расположенные на столе. Пусть у нас есть список имен:
Егор
Аня
Гриша
Боря
Вера
Обратите внимание на то, что подсписок, состоящий только из первого имени Егор, уже упорядочен, а подсписок, состоящий из первых двух имен, Егор и Аня, — не упорядочен. Следовательно, нужно взять карточку с именем Аня, опустить, карточку с именем Егор на место, где находилась карточка Аня, и затем поместить имя Аня в пустую позицию вверху списка (как показано в первом ряду рис. 4.6). На этом этапе наш список будет таким:
Аня
Егор
Гриша
Боря
Вера
Теперь два первых имени образуют упорядоченный список, а первые три — нет. Следовательно, мы должны взять карточку с третьим именем, Гриша, опустить карточку с именем Егор на место, где находилось имя Гриша, а затем поместить имя Гриша в пустую позицию, как показано во втором ряду рис. 4.6. Теперь упорядочены первые три элемента списка. Взяв карточку с четвертым именем, Боря, опустив имена Егор и Гриша вниз и вставив имя Боря в полученный промежуток, мы получим список, в котором упорядочены первые четыре элемента (третий ряд рис. 4.6). И, наконец, мы завершаем процесс сортировки: выбираем имя Вера, опускаем имена Егор и Гриша на одну позицию вниз и вставляем имя Вера в промежуток между карточками.
Проанализировав процесс сортировки отдельного списка, мы должны обобщить его, чтобы получить алгоритм сортировки любого списка. Можно заметить, что каждый ряд, изображенный на рис. 4.6, отображает один и тот же общий процесс: выбрать первое имя неупорядоченной части списка, переместить имена, которые больше выбранного имени, вниз и поместить данное имя в образовавшуюся пустую позицию. Если мы определим выбранное имя как ведущий элемент (pivot entry), то этот процесс можно записать следующим образом:
Временно переместить ведущий элемент в другое место, оставив одну позицию Список пустой; while (есть имя над пустой позицией, и оно больше ведущего элемента) do
(переместить имя, находящееся над пустой позицией, в эту пустую позицию.
оставив пустой позицию над этим элементом) Переместить ведущий элемент в пустую позицию Список.
Также можно заметить, что этот процесс выполняется несколько раз. Для того чтобы можно было начать процесс сортировки, ведущим должен быть второй элемент списка, а затем перед каждым выполнением цикла ведущим элементом назначается следующий элемент списка, и так до тех пор, пока мы не достигнем конца списка. То есть по мере выполнения процедуры исходная позиция ведущего элемента перемещается от второго элемента к третьему, затем к четвертому и т. д., пока процедура не достигнет последнего элемента списка. Контролировать выполнение цикла можно с помощью выражения:
N <- 2;
while (значение N не превышает длину Список) do (назначить N-й элемент Список ведущим;
N <- N + 1)
где выражение «длина списка» обозначает число элементов в списке, а точки
указывают расположение описанной выше процедуры.
Полная программа сортировки списка, записанная с помощью псевдокода приведена в листинге 4.2. Эта программа упорядочивает список, многократно перемещая элемент и вставляя его в нужное место списка. Именно благодаря процессу вставки лежащий в основе алгоритм называется сортировкой методом вставки (insertion sort).
Листинг 4.2. Алгоритм сортировки методом вставки, записанный с помощью псевдокода
procedure Сортировка (Список)
N <- 2;
while (значение N не превышает длину Список) do
(назначить N-й элемент Список ведущим:
Временно переместить ведущий элемент в другое место, оставив одну позицию Список пустой:
while (есть имя над пустой позицией, и это имя больше ведущего элемента) do
(переместить имя, находящееся над пустой позицией, в эту пустую позицию, оставив пустой позицию над этим элементом)
Переместить ведущий элемент в пустую позицию Список:
N <- N + 1)
Обратите внимание на то, что структура программы (см. листинг 4.2) представляет собой цикл, помещенный в цикл. Внешний цикл описывается первым оператором while, а внутренний — вторым. Выполнение тела внешнего цикла приводит к инициализации и выполнению внутреннего цикла до тех пор, пока его условие завершения не будет истинно. Следовательно, однократное выполнение внешнего цикла приведет к тому, что тело внутреннего цикла будет выполнено несколько раз.
Во время выполнения шага инициализации внешнего цикла устанавливается исходное значение переменной N: N «-2
В процессе выполнения шага модификации увеличивается значение переменной N в конце тела цикла: N «-N +1
Условие завершения выполняется, когда значение N превышает длину списка.
При инициализации внутреннего цикла ведущий элемент изымается из списка, в результате чего образуется пустая позиция. Во время выполнения шага модификации элемент перемещается в пустую позицию так, что она поднимается на один элемент вверх. Условие завершения выполняется в случае, когда пустая позиция находится под элементом, который меньше ведущего элемента, или когда пустая позиция находится в начале списка.
