- •Предисловие
- •Введение
- •1Архитектура эвм
- •1.1 Биты и их хранение
- •1.1.1Вентили и триггеры
- •1.1.2Другие способы хранения битов
- •1.1.3Шестнадцатеричная система счисления
- •1.2 Оперативная память
- •1.2.1Структура памяти
- •1.2.2Измерение емкости памяти
- •1.3 Устройства хранения данных
- •1.3.1Магнитные диски
- •1.3.2Компакт-диски
- •1.3.3Магнитные ленты
- •1.3.4Хранение и поиск файлов
- •1.4 Представление информации в виде двоичного кода
- •1.4.1Представление текста
- •1.4.2Американский национальный институт стандартов
- •1.4.3Iso - международная организация по стандартизации
- •1.4.4Представление числовых значений
- •1.4.5Представление изображений
- •1.4.6Представление звука
- •1.5 Двоичная система счисления
- •1.5.1Альтернатива двоичной системе счисления
- •1.5.2Дроби в двоичной системе счисления
- •1.5.3Аналоговые и цифровые устройства
- •1.6 Хранение целых чисел
- •1.6.1Представление в двоичном дополнительном коде
- •1.6.2Сложение в двоичном дополнительном коде
- •1.6.3Проблема переполнения
- •1.6.4Представление с избытком
- •1.7 Хранение дробей
- •1.7.1Представление с плавающей точкой
- •1.7.2Ошибка усечения
- •1.8 Сжатие данных
- •1.8.1Общие методы сжатия данных
- •1.8.2Сжатие звука
- •1.8.3Сжатие изображений
- •1.9 Ошибки передачи данных
- •1.9.1Контрольный разряд четности
- •1.9.2Коды с исправлением ошибок
- •2Манипулирование данными
- •2.1 Архитектура эвм
- •2.1.1Сложение двух чисел, хранящихся в оперативной памяти
- •2.1.2Кто и что изобрел?
- •2.2 Машинный язык
- •2.2.1Система команд
- •2.2.2Кэш-память
- •2.2.3Арифметико-логические команды
- •2.2.4Команды управления
- •2.2.5Деление двух значений, хранящихся в памяти
- •2.3 Выполнение программы
- •2.3.1Пример выполнения программы
- •2.3.2Команды переменной длины
- •2.3.3Программы и данные
- •2.4 Арифметические и логические операции
- •2.4.1Логические операции
- •2.4.2Сравнение вычислительной мощности эвм
- •2.4.3Операции сдвига
- •2.4.4Арифметические операции
- •2.5 Связь с другими устройствами
- •2.5.1Связь через контроллер
- •2.5.2Строение шины
- •2.5.3Скорость передачи данных
- •2.6 Другие архитектуры
- •2.6.1Конвейерная обработка
- •3Операционные системы и организация сетей
- •3.13.1. Эволюция операционных систем
- •3.1.1Однопроцессорные системы
- •3.1.2Многопроцессорные системы
- •3.2 Архитектура операционной системы
- •3.2.1Программное обеспечение
- •3.2.2Полезное единообразие или вредная монополия?
- •3.2.3Компоненты операционной системы
- •3.2.4Операционная система linux
- •3.2.5Начало работы операционной системы
- •3.3 Координирование действий машины
- •3.3.1Понятие процесса
- •3.3.2Управление процессами
- •3.3.3Модель «клиент-сервер»
- •3.4 Обработка конкуренции между процессами
- •3.4.1Семафор
- •3.4.2Взаимная блокировка
- •3.5 Сети
- •3.5.1Основы организации сетей
- •3.5.2Интернет
- •3.5.3Топология сети Интернет
- •3.5.4Система адресов Интернета
- •3.5.5Электронная почта
- •3.5.6Всемирная паутина
- •3.6 Сетевые протоколы
- •3.6.1Управление правом отправки сообщений
- •3.6.2Сеть ethernet
- •3.6.3Javascript, апплеты, cgi и сервлеты
- •3.6.4Многоуровневый принцип программного обеспечения Интернета
- •3.6.5Комплект протоколов tcp/ip
- •3.6.6Протоколы рорз и imap
- •3.7 Безопасность
- •3.7.1Протокол защищенных сокетов
- •3.7.2Группа компьютерной «скорой помощи»
- •4Алгоритмы
- •4.1 Понятие алгоритма
- •4.1.1Предварительные замечания
- •4.1.2Формальное определение алгоритма
- •4.1.3Определение алгоритма
- •4.1.4Абстрактная природа алгоритма
- •4.2 Представление алгоритма
- •4.2.1Примитивы
- •4.2.2Псевдокод
- •4.3 Создание алгоритма
- •4.3.1Искусство решения задач
- •4.3.2Итеративные структуры в музыке
- •4.3.3Первый шаг в решении задачи
- •4.4 Итеративные структуры
- •4.4.1Алгоритм последовательного поиска
- •4.4.2Управление циклом
- •4.4.3Алгоритм сортировки методом вставок
- •4.5Рекурсивные структуры
- •4.5.1Поиск и сортировка
- •4.5.2Алгоритм двоичного поиска
- •4.5.3Управление рекурсивными структурами
- •4.6 Эффективность и правильность
- •4.6.1Эффективность алгоритма
- •4.6.2Проверка правильности программного обеспечения
- •4.6.3По ту сторону проверки правильности программ
- •5Языки программирования
- •5.1 Исторический обзор
- •5.1.1Ранние поколения
- •5.1.2Интерплатформенное программное обеспечение
- •5.1.3Независимость от машины
- •5.1.4Парадигмы программирования
- •5.2 Основные понятия традиционного программирования
- •5.2.1Культуры языков программирования
- •5.2.2Переменные и типы данных
- •5.2.3Структуры данных
- •5.2.4Константы и литералы
- •5.2.5Операторы присваивания
- •5.2.6Управляющие операторы
- •5.2.7Комментарии
- •5.3 Процедурные единицы
- •5.3.1Процедуры
- •5.3.2Событийно-управляемые программные системы
- •5.3.3Параметры
- •5.3.4Функции
- •5.3.5Операторы ввода-вывода
- •5.4 Реализация языка программирования
- •5.4.1Процесс трансляции программы
- •5.4.2Реализация java
- •5.4.3Компоновка и загрузка
- •5.4.4Пакеты разработки программного обеспечения
- •5.5 Объектно-ориентированное программирование
- •5.5.1Классы и объекты
- •5.5.3Конструкторы
- •5.5.4Дополнительные возможности
- •5.6 Параллельные операции
- •5.7 Декларативное программирование
- •5.7.1Логическая дедукция
- •5.7.2Язык программирования Prolog
- •6Разработка программного обеспечения
- •6.1 Разработка программного обеспечения
- •6.1.1Ассоциация по вычислительной технике
- •6.1.2Институт инженеров по электротехнике и электронике
- •6.2 Жизненный цикл программы
- •6.2.1Цикл как единое целое
- •6.2.2Разработка программного обеспечения на практике
- •6.2.3Этапы разработки программного обеспечения
- •6.2.4Анализ
- •6.2.5Проектирование
- •6.2.6Реализация
- •6.2.7Тестирование
- •6.2.8Современные тенденции
- •6.3 Модульность
- •6.3.1Модульная реализация программы
- •6.3.2Связь модулей системы
- •6.3.3Связность модуля
- •6.4 Методики проектирования
- •6.4.1Нисходящее и восходящее проектирование
- •6.4.2Модели проектирования
- •6.4.3Разработка открытых программных продуктов
- •6.5 Инструменты проектирования
- •6.6 Тестирование
- •6.7 Документация
- •6.8 Право собственности на программное обеспечение и ответственность
- •Часть 3 организация данных
- •7Структуры данных
- •7.1 Основы структур данных
- •7.1.1Опять абстракция
- •7.1.2Статические и динамические структуры
- •7.1.3Указатели
- •7.2 Массивы
- •7.3 Списки
- •7.3.1Непрерывные списки
- •7.3.2Реализация непрерывных списков
- •7.3.3Связные списки
- •7.3.4Поддержка абстрактного списка
- •7.4 Стеки
- •7.4.1Откат
- •7.4.2Реализация стека
- •7.5 Очереди
- •7.5.1Проблема указателей
- •7.6 Деревья
- •7.6.1Реализация дерева
- •7.6.2Сбор мусора
- •7.6.3Пакет бинарного дерева
- •7.7 Пользовательские типы данных
- •7.7.1Пользовательские типы
- •7.7.2Классы
- •7.7.3Описательное и процедурное знание
- •7.7.4Стандартная библиотека шаблонов
- •7.8 Указатели в машинном языке
- •8Файловые структуры
- •8.1 Роль операционной системы
- •8.1.1Таблицы размещения файлов
- •8.2 Последовательные файлы
- •8.2.1Обработка последовательных файлов
- •8.2.2Консорциум производителей программного обеспечения для www
- •8.2.3Текстовые файлы
- •8.2.4Текстовые и двоичные файлы
- •8.2.5Вопросы программирования
- •8.2.6Семантическая сеть
- •8.3 Индексация
- •8.3.1Основные положения индексации
- •8.3.2Вопросы программирования
- •8.3.3Расположение файлов на дисках
- •8.4 Хэширование
- •8.4.1Хэш-система
- •8.4.2Проблемы распределения
- •8.4.3Аутентификация посредством хэширования
- •8.4.4Вопросы программирования
- •9Структуры баз данных
- •9.1 Общие вопросы
- •9.2 Многоуровневый подход к реализации базы данных
- •9.2.1Система управления базой данных
- •9.2.2Распределенные базы данных
- •9.2.3Модели баз данных
- •9.3 Реляционная модель баз данных
- •9.3.1Вопросы реляционного проектирования
- •9.3.2Системы баз данных для персональных компьютеров
- •9.3.3Хронологические базы данных
- •9.3.4Реляционные операции
- •9.3.5Вопросы реализации
- •9.3.6Язык sql
- •9.4 Объектно-ориентированные базы данных
- •9.5 Поддержка целостности базы данных
- •9.5.1Пространственные базы данных
- •9.5.2Протоколы фиксации/отката изменений
- •9.5.3Блокировка
- •9.6 Воздействие технологий баз данных на общество
- •10Искусственный интеллект
- •10.1 Интеллект и машины
- •10.1.1Конечный результат или имитация
- •10.1.2Истоки искусственного интеллекта
- •10.1.3Тест Тьюринга
- •10.1.4Машина для решения головоломки из восьми фишек
- •10.2 Распознавание образов
- •10.3 Мышление
- •10.3.1Продукционные системы
- •10.3.2Интеллект, основанный на поведении
- •10.3.3Деревья поиска
- •10.3.4Эвристика
- •10.4 Искусственные нейронные сети
- •10.4.1Основные свойства
- •10.4.2Приложение теории
- •10.4.3Ассоциативная память
- •10.5 Генетические алгоритмы
- •10.6 Прочие области исследования
- •10.6.1Обработка лингвистической информации
- •10.6.2Рекурсия в естественных языках
- •10.6.3Роботы
- •10.6.4Системы баз данных
- •10.6.5Экспертные системы
- •10.7 Обдумывая последствия
- •10.7.1Сильный искусственный интеллект против слабого
- •11Теория вычислений
- •11.1 Функции и их вычисление
- •11.1.1Теория рекурсивных функций
- •11.2 Машины Тьюринга
- •11.2.1Основы машины Тьюринга
- •11.2.2Истоки машины Тьюринга
- •11.2.3Тезис Черча-Тьюринга
- •11.3 Универсальные языки программирования
- •11.3.1Скелетный язык
- •11.3.2Существуют ли инопланетяне?
- •11.3.3Универсальность скелетного языка
- •11.4 Невычислимая функция
- •11.4.1Проблема останова
- •11.4.2Неразрешимость проблемы останова
- •11.5 Сложность задач
- •11.5.1Измерение сложности задачи
- •11.5.2Пространственная сложность
- •11.5.3Полиномиальные и не полиномиальные задачи
- •11.5.5Детерминированность против недетерминированности
- •11.6Шифрование с открытым ключом
- •11.6.1Шифрование при помощи задачи о ранце
- •11.6.2Популярные системы шифрования
- •11.6.3Модульная арифметика
- •11.6.4Обратно к шифрованию
3.5.5Электронная почта
Для передачи сообщений от одного пользователя к другому (такая система называется электронной почтой — e-mail) каждое локальное руководство назначает машину, которая выполняет все действия по обработке электронной почты. Эта машина называется сервером электронной почты домена (mail server). Каждое сообщение электронной почты, исходящее из домена, сначала отправляется на сервер электронной почты, который затем отправляет его по указанному адресу. Точно так же каждое входящее сообщение, адресованное пользователю, машина которого находится в домене, сначала приходит на сервер электронной почты, где оно находится до тех пор, пока пользователь не захочет просмотреть входящие сообщение.
Помня о функции, выполняемой сервером электронной почты домена, легко понять структуру адреса электронной почты. Он состоит из цепочки символов, обозначающих пользователя, за которой следует символ @ и мнемоническое имя сервера электронной почты, который должен получить сообщение. Следовательно, адрес электронной почты сотрудника компании Addison-Wesley будет иметь вид: shakespeare@mailroom.aw.com. Другими словами, машина с именем mailroom домена aw.com является сервером электронной почты, который обрабатывает почту пользователя Shakespeare. Домены обычно создаются так, что имя сервера электронной почты не обязательно фигурирует в адресе электронной почты. В этих случаях адрес состоит из цепочки символов, за которой следует символ @ и мнемоническое имя домена. Таким образом, приведенный выше адрес сводится к shakespeare@aw.com.
3.5.6Всемирная паутина
Кроме того, что Интернет предоставляет возможность коммуникации с помощью электронной почты, он также является средством распространения мультимедийных документов, которые называются гипертекстовыми документами (hypertext) и состоят из фрагментов текста, звуковых и видеоданных. Такие документы можно связывать с другими документами. (По отношению к расширенным документам, в которые входят другие форматы данных кроме текста, иногда используется термин «гипермедиа».) Пользователь, читающий гипертекстовый документ, может заходить по ссылкам в другие документы с помощью одного щелчка мышью. Предположим, например, что гипертекстовый документ содержит предложение Исполнение «Болеро» Мориса Равеля было превосходным, при этом имя Морис Равель является ссылкой на другой документ, содержащий информацию об этом композиторе. Читатель может просмотреть этот материал, щелкнув мышью на ссылке. Кроме того, если созданы соответствующие ссылки, читатель может прослушать аудиозапись концерта, щелкнув на названии «Болеро».
Таким образом, читатель гипертекстового документа имеет возможность изучить связанные с ним документы или следовать за ходом мысли от документа к документу. Поскольку части документов связаны с другими документами, формируется связанная паутина информации. Если поместить документы в компьютерную сеть, то в такой паутине они могут храниться на разных машинах, образуя паутину в пределах сети. Точно та же паутина, которая доросла до размеров Интернета, охватывает весь земной шар и называется Всемирной паутиной (World Wide Web, или WWW). Гипертекстовые документы Всемирной паутины называются веб-страницами (Web page). Набор тесно связанных страниц, хранящихся в одном месте, называется веб-узлом, или веб-сайтом (Website).
Пакеты программного обеспечения, с помощью которых осуществляется доступ к гипертекстовым документам Интернета, можно разделить на две категории: пакеты, выполняющие функции клиента и выполняющие функции сервера. Пакеты-клиенты хранятся на машине пользователя, достают информацию, затребованную пользователем, и отображают ее на экране компьютера. Именно они обеспечивают пользовательский интерфейс, который позволяет просматривать веб-страницы. Такие пакеты программ называются браузерами, или иногда веб-браузерами (Web browser). Пакеты, выполняющие функции сервера, хранятся на машине, содержащей документы, которые запрашивают пользователи. Их задачей является обеспечение доступа к документам по требованию клиента. Следовательно, пользователь получает доступ к гипертекстовым документам благодаря браузеру, который находится на его машине. Браузер находит документы, запрашивая их у серверов, разбросанных по всему Интернету.
Для определения местоположения документа и извлечения его из Всемирной паутины каждому документу назначается уникальный адрес, который называется URL (Uniform resource locator — унифицированный указатель информационного ресурса). Каждый URL содержит информацию, необходимую браузеру для соединения с сервером и нахождения документа. Обычный URL представлен на рис. 3.13. Иногда URL не идентифицирует документ явным образом, а содержит только протокол и мнемонический адрес машины. В таких случаях сервер, находящийся на этой машине, возвращает заранее заданный документ, который называется главной страницей и в котором описывается информация, хранящаяся на машине. Такие укороченные URL обычно используются для связи с организациями. Например, URL, имеющий вид http://www.aw.com, откроет главную страницу компании Addison-Wesley, которая содержит ссылки на другие документы, касающиеся компании и ее продукции.
Гипертекстовые документы напоминают обычные текстовые документы тем, что текст, находящийся в них, закодирован посимвольно в системе кодов ASCII
или Unicode. Различие же заключается в том, что гипертекстовый документ также содержит специальные символы, которые называются тегами и описывают, как следует отображать документ на экране компьютера и какие элементы документа являются ссылками на другие документы. Эта система тегов называется языком HTML (Hypertext Markup Language — язык разметки гипертекстовых документов). Таким образом, именно на языке HTML автор вебстраницы записывает информацию, необходимую браузеру для отображения страницы на экране компьютера и для нахождения документов, связанных с этой страницей.
Запись несложной веб-страницы на языке HTML представлена на рис. 3.14. Она состоит из двух разделов: заголовка (head) и тела (body). Заголовок содержит предварительную информацию, точно так же, как например, служебная записка начинается с даты и темы. Тело документа содержит данные, которые нужно отобразить на экране компьютера пользователя. В нашем случае страница состоит просто из сообщения «My Web Page», которое отображается на экране. (Текст «My Web Page» описан как заголовок первого уровня с помощью тега hi.) Более подробно язык HTML рассматривается в главе 8.
