- •Предисловие
- •Введение
- •1Архитектура эвм
- •1.1 Биты и их хранение
- •1.1.1Вентили и триггеры
- •1.1.2Другие способы хранения битов
- •1.1.3Шестнадцатеричная система счисления
- •1.2 Оперативная память
- •1.2.1Структура памяти
- •1.2.2Измерение емкости памяти
- •1.3 Устройства хранения данных
- •1.3.1Магнитные диски
- •1.3.2Компакт-диски
- •1.3.3Магнитные ленты
- •1.3.4Хранение и поиск файлов
- •1.4 Представление информации в виде двоичного кода
- •1.4.1Представление текста
- •1.4.2Американский национальный институт стандартов
- •1.4.3Iso - международная организация по стандартизации
- •1.4.4Представление числовых значений
- •1.4.5Представление изображений
- •1.4.6Представление звука
- •1.5 Двоичная система счисления
- •1.5.1Альтернатива двоичной системе счисления
- •1.5.2Дроби в двоичной системе счисления
- •1.5.3Аналоговые и цифровые устройства
- •1.6 Хранение целых чисел
- •1.6.1Представление в двоичном дополнительном коде
- •1.6.2Сложение в двоичном дополнительном коде
- •1.6.3Проблема переполнения
- •1.6.4Представление с избытком
- •1.7 Хранение дробей
- •1.7.1Представление с плавающей точкой
- •1.7.2Ошибка усечения
- •1.8 Сжатие данных
- •1.8.1Общие методы сжатия данных
- •1.8.2Сжатие звука
- •1.8.3Сжатие изображений
- •1.9 Ошибки передачи данных
- •1.9.1Контрольный разряд четности
- •1.9.2Коды с исправлением ошибок
- •2Манипулирование данными
- •2.1 Архитектура эвм
- •2.1.1Сложение двух чисел, хранящихся в оперативной памяти
- •2.1.2Кто и что изобрел?
- •2.2 Машинный язык
- •2.2.1Система команд
- •2.2.2Кэш-память
- •2.2.3Арифметико-логические команды
- •2.2.4Команды управления
- •2.2.5Деление двух значений, хранящихся в памяти
- •2.3 Выполнение программы
- •2.3.1Пример выполнения программы
- •2.3.2Команды переменной длины
- •2.3.3Программы и данные
- •2.4 Арифметические и логические операции
- •2.4.1Логические операции
- •2.4.2Сравнение вычислительной мощности эвм
- •2.4.3Операции сдвига
- •2.4.4Арифметические операции
- •2.5 Связь с другими устройствами
- •2.5.1Связь через контроллер
- •2.5.2Строение шины
- •2.5.3Скорость передачи данных
- •2.6 Другие архитектуры
- •2.6.1Конвейерная обработка
- •3Операционные системы и организация сетей
- •3.13.1. Эволюция операционных систем
- •3.1.1Однопроцессорные системы
- •3.1.2Многопроцессорные системы
- •3.2 Архитектура операционной системы
- •3.2.1Программное обеспечение
- •3.2.2Полезное единообразие или вредная монополия?
- •3.2.3Компоненты операционной системы
- •3.2.4Операционная система linux
- •3.2.5Начало работы операционной системы
- •3.3 Координирование действий машины
- •3.3.1Понятие процесса
- •3.3.2Управление процессами
- •3.3.3Модель «клиент-сервер»
- •3.4 Обработка конкуренции между процессами
- •3.4.1Семафор
- •3.4.2Взаимная блокировка
- •3.5 Сети
- •3.5.1Основы организации сетей
- •3.5.2Интернет
- •3.5.3Топология сети Интернет
- •3.5.4Система адресов Интернета
- •3.5.5Электронная почта
- •3.5.6Всемирная паутина
- •3.6 Сетевые протоколы
- •3.6.1Управление правом отправки сообщений
- •3.6.2Сеть ethernet
- •3.6.3Javascript, апплеты, cgi и сервлеты
- •3.6.4Многоуровневый принцип программного обеспечения Интернета
- •3.6.5Комплект протоколов tcp/ip
- •3.6.6Протоколы рорз и imap
- •3.7 Безопасность
- •3.7.1Протокол защищенных сокетов
- •3.7.2Группа компьютерной «скорой помощи»
- •4Алгоритмы
- •4.1 Понятие алгоритма
- •4.1.1Предварительные замечания
- •4.1.2Формальное определение алгоритма
- •4.1.3Определение алгоритма
- •4.1.4Абстрактная природа алгоритма
- •4.2 Представление алгоритма
- •4.2.1Примитивы
- •4.2.2Псевдокод
- •4.3 Создание алгоритма
- •4.3.1Искусство решения задач
- •4.3.2Итеративные структуры в музыке
- •4.3.3Первый шаг в решении задачи
- •4.4 Итеративные структуры
- •4.4.1Алгоритм последовательного поиска
- •4.4.2Управление циклом
- •4.4.3Алгоритм сортировки методом вставок
- •4.5Рекурсивные структуры
- •4.5.1Поиск и сортировка
- •4.5.2Алгоритм двоичного поиска
- •4.5.3Управление рекурсивными структурами
- •4.6 Эффективность и правильность
- •4.6.1Эффективность алгоритма
- •4.6.2Проверка правильности программного обеспечения
- •4.6.3По ту сторону проверки правильности программ
- •5Языки программирования
- •5.1 Исторический обзор
- •5.1.1Ранние поколения
- •5.1.2Интерплатформенное программное обеспечение
- •5.1.3Независимость от машины
- •5.1.4Парадигмы программирования
- •5.2 Основные понятия традиционного программирования
- •5.2.1Культуры языков программирования
- •5.2.2Переменные и типы данных
- •5.2.3Структуры данных
- •5.2.4Константы и литералы
- •5.2.5Операторы присваивания
- •5.2.6Управляющие операторы
- •5.2.7Комментарии
- •5.3 Процедурные единицы
- •5.3.1Процедуры
- •5.3.2Событийно-управляемые программные системы
- •5.3.3Параметры
- •5.3.4Функции
- •5.3.5Операторы ввода-вывода
- •5.4 Реализация языка программирования
- •5.4.1Процесс трансляции программы
- •5.4.2Реализация java
- •5.4.3Компоновка и загрузка
- •5.4.4Пакеты разработки программного обеспечения
- •5.5 Объектно-ориентированное программирование
- •5.5.1Классы и объекты
- •5.5.3Конструкторы
- •5.5.4Дополнительные возможности
- •5.6 Параллельные операции
- •5.7 Декларативное программирование
- •5.7.1Логическая дедукция
- •5.7.2Язык программирования Prolog
- •6Разработка программного обеспечения
- •6.1 Разработка программного обеспечения
- •6.1.1Ассоциация по вычислительной технике
- •6.1.2Институт инженеров по электротехнике и электронике
- •6.2 Жизненный цикл программы
- •6.2.1Цикл как единое целое
- •6.2.2Разработка программного обеспечения на практике
- •6.2.3Этапы разработки программного обеспечения
- •6.2.4Анализ
- •6.2.5Проектирование
- •6.2.6Реализация
- •6.2.7Тестирование
- •6.2.8Современные тенденции
- •6.3 Модульность
- •6.3.1Модульная реализация программы
- •6.3.2Связь модулей системы
- •6.3.3Связность модуля
- •6.4 Методики проектирования
- •6.4.1Нисходящее и восходящее проектирование
- •6.4.2Модели проектирования
- •6.4.3Разработка открытых программных продуктов
- •6.5 Инструменты проектирования
- •6.6 Тестирование
- •6.7 Документация
- •6.8 Право собственности на программное обеспечение и ответственность
- •Часть 3 организация данных
- •7Структуры данных
- •7.1 Основы структур данных
- •7.1.1Опять абстракция
- •7.1.2Статические и динамические структуры
- •7.1.3Указатели
- •7.2 Массивы
- •7.3 Списки
- •7.3.1Непрерывные списки
- •7.3.2Реализация непрерывных списков
- •7.3.3Связные списки
- •7.3.4Поддержка абстрактного списка
- •7.4 Стеки
- •7.4.1Откат
- •7.4.2Реализация стека
- •7.5 Очереди
- •7.5.1Проблема указателей
- •7.6 Деревья
- •7.6.1Реализация дерева
- •7.6.2Сбор мусора
- •7.6.3Пакет бинарного дерева
- •7.7 Пользовательские типы данных
- •7.7.1Пользовательские типы
- •7.7.2Классы
- •7.7.3Описательное и процедурное знание
- •7.7.4Стандартная библиотека шаблонов
- •7.8 Указатели в машинном языке
- •8Файловые структуры
- •8.1 Роль операционной системы
- •8.1.1Таблицы размещения файлов
- •8.2 Последовательные файлы
- •8.2.1Обработка последовательных файлов
- •8.2.2Консорциум производителей программного обеспечения для www
- •8.2.3Текстовые файлы
- •8.2.4Текстовые и двоичные файлы
- •8.2.5Вопросы программирования
- •8.2.6Семантическая сеть
- •8.3 Индексация
- •8.3.1Основные положения индексации
- •8.3.2Вопросы программирования
- •8.3.3Расположение файлов на дисках
- •8.4 Хэширование
- •8.4.1Хэш-система
- •8.4.2Проблемы распределения
- •8.4.3Аутентификация посредством хэширования
- •8.4.4Вопросы программирования
- •9Структуры баз данных
- •9.1 Общие вопросы
- •9.2 Многоуровневый подход к реализации базы данных
- •9.2.1Система управления базой данных
- •9.2.2Распределенные базы данных
- •9.2.3Модели баз данных
- •9.3 Реляционная модель баз данных
- •9.3.1Вопросы реляционного проектирования
- •9.3.2Системы баз данных для персональных компьютеров
- •9.3.3Хронологические базы данных
- •9.3.4Реляционные операции
- •9.3.5Вопросы реализации
- •9.3.6Язык sql
- •9.4 Объектно-ориентированные базы данных
- •9.5 Поддержка целостности базы данных
- •9.5.1Пространственные базы данных
- •9.5.2Протоколы фиксации/отката изменений
- •9.5.3Блокировка
- •9.6 Воздействие технологий баз данных на общество
- •10Искусственный интеллект
- •10.1 Интеллект и машины
- •10.1.1Конечный результат или имитация
- •10.1.2Истоки искусственного интеллекта
- •10.1.3Тест Тьюринга
- •10.1.4Машина для решения головоломки из восьми фишек
- •10.2 Распознавание образов
- •10.3 Мышление
- •10.3.1Продукционные системы
- •10.3.2Интеллект, основанный на поведении
- •10.3.3Деревья поиска
- •10.3.4Эвристика
- •10.4 Искусственные нейронные сети
- •10.4.1Основные свойства
- •10.4.2Приложение теории
- •10.4.3Ассоциативная память
- •10.5 Генетические алгоритмы
- •10.6 Прочие области исследования
- •10.6.1Обработка лингвистической информации
- •10.6.2Рекурсия в естественных языках
- •10.6.3Роботы
- •10.6.4Системы баз данных
- •10.6.5Экспертные системы
- •10.7 Обдумывая последствия
- •10.7.1Сильный искусственный интеллект против слабого
- •11Теория вычислений
- •11.1 Функции и их вычисление
- •11.1.1Теория рекурсивных функций
- •11.2 Машины Тьюринга
- •11.2.1Основы машины Тьюринга
- •11.2.2Истоки машины Тьюринга
- •11.2.3Тезис Черча-Тьюринга
- •11.3 Универсальные языки программирования
- •11.3.1Скелетный язык
- •11.3.2Существуют ли инопланетяне?
- •11.3.3Универсальность скелетного языка
- •11.4 Невычислимая функция
- •11.4.1Проблема останова
- •11.4.2Неразрешимость проблемы останова
- •11.5 Сложность задач
- •11.5.1Измерение сложности задачи
- •11.5.2Пространственная сложность
- •11.5.3Полиномиальные и не полиномиальные задачи
- •11.5.5Детерминированность против недетерминированности
- •11.6Шифрование с открытым ключом
- •11.6.1Шифрование при помощи задачи о ранце
- •11.6.2Популярные системы шифрования
- •11.6.3Модульная арифметика
- •11.6.4Обратно к шифрованию
1.4.3Iso - международная организация по стандартизации
Международная организация по стандартизации (ISO) была организована в 1947 году как всемирная организация органов стандартизации, по одному из каждой страны. Сегодня ее штаб-квартира находится в Женеве (Швейцария). Членами организации являются более 100 национальных институтов и многочисленные член-корреспонденты. (Член-корреспондент является представителем страны, в которой не существует национального института стандартизации. Они не могут непосредственно участвовать в разработке стандартов, но их информируют о шагах, предпринимаемых ISO.) Веб-страница ISO находится по адресу http:// www.iso.ch.
1.4.4Представление числовых значений
Хотя метод хранения информации в виде закодированных символов удобен, он неэффективен, когда мы имеем дело только с числовой информацией. Чтобы понять, почему это так, рассмотрим, как будет храниться число 25. Если мы хотим хранить его в стандарте ASCII, используя для каждого символа 1 байт памяти, то нам потребуется в общей сумме 16 битов. Кроме того, самое большое число, которое мы можем представить, используя 16 битов, это 99. Более эффективным является хранение числового значения в двоичном представлении.
Двоичное представление (binary notation) — это способ записи числовых значений, в котором используются только 0 и 1, а не 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, как в традиционной, десятичной, системе счисления. Напомним, что в десятичной системе счисления каждой позиции в записи числа соответствует определенный разряд. В записи числа 375 цифра 5 занимает позицию единиц, 7 — позицию десятков, 3 — позицию сотен (рис. 1.14, а). При смещении по записи числа влево вес разряда увеличивается в десять раз. Значение, представленное записью, можно получить, умножив значение каждого числа на вес его разряда и затем сложив полученные произведения. Например, запись 375 имеет вид (3 х 100) + (7 х 10) + (5х 1).
В двоичном представлении каждая позиция в записи числа также соответствует определенному разряду, при движении по записи числа влево вес разряда каждый раз увеличивается в два раза. Более точно, вес разряда последнего числа справа равен единице (2°), вес разряда следующего числа равен двум (21), следующего — четырем (22), следующего — восьми (23) и т. д. Например, в двоичной записи 1011 самая крайняя справа 1 соответствует весу разряда, равному единице, следующая единица — весу разряда, равному двум, 0 соответствует весу разряда, равному четырем, а самая крайняя слева 1 — весу разряда, равному восьми (рис. 1.14, б).
Чтобы получить значение, представленное двоичной записью, выполняем те же действия, как в случае с десятичной системой счисления: умножаем значение каждой цифры на вес соответствующего разряда и складываем полученные произведения. Например, значение, имеющее запись 100101, равно 37 (рис. 1.15). Обратите внимание на то, что поскольку в двоичном представлении используются только 0 и 1, то получение значения числа сводится к суммированию тех разрядов, в которых в записи стоит единица. Следовательно, двоичная запись 1011 имеет значение 11, так как единицы соответствуют разрядам 1, 2 и 8.
Последовательность двоичных записей, соответствующих десятичным числам от 0 до 8, выглядит следующим образом: 0, 1, 10, 11, 100, 101, 110, 111, 1000.
Существуют различные подходы к получению этой последовательности, и хотя они не всегда красивы с теоретической точки зрения, однако обеспечивают быстрое получение двоичной записи небольших чисел. Один подход — представить счетчик пройденного пути автомобиля, содержащий только числа 0 и 1 на своем табло. Счетчик пройденного пути стоит на 0 и затем показывает 1, когда машина начинает двигаться. Затем единица снова заменяется нулем, при этом соседнее значение слева становится равным 1, и мы имеем 10. Потом 0 справа заменяется единицей, и значение на счетчике пройденного пути становится равным 11. Теперь самое крайнее значение и значение справа от него опять заменяются нулями, что приводит к появлению единицы на третьем колесе счетчика пройденного пути, который теперь показывает 100.
Для получения двоичной записи больших положительных чисел можно использовать более систематический подход, описываемый следующим алгоритмом.
Шаг 1. Разделите число на два и запишите остаток деления.
Шаг 2. До тех пор пока частное не равно нулю, продолжайте делить частные на два и записывать остаток.
Шаг 3. Когда частное станет равно нулю, двоичная запись числа будет состоять из остатков деления, выписанных справа налево в том порядке, в каком они были получены.
Применим этот алгоритм к числу 13 (рис. 1.16). Сначала делим тринадцать на два, получаем частное, равное шести, и единицу в остатке; так как частное не равно нулю, делим его на два в соответствии с шагом 2. В результате имеем новое частное, равное трем, и ноль в остатке. Это частное также не равно нулю, поэтому делим его на два, получая частное, равное единице, и два в остатке. Еще раз делим частное (единицу) на два, в этот раз частное равно нулю, а остаток единице. Так как мы получили в результате деления ноль, то переходим к третьему шагу и получаем двоичную запись исходного значения (тринадцать), которая имеет вид 1101.
Теперь вспомним пример хранения числа 25, который мы привели в начале этого раздела. Как мы заметили, для представления этого числа в стандарте ASCII потребуется два байта памяти, и самое большое число, которое мы сможем сохранить в этих двух байтах, равно 99. Однако если мы будем использовать двоичное представление, мы сможем хранить целые числа в интервале от 0 до 65 535, что является значительным усовершенствованием.
По этой и другим причинам числовую информацию принято хранить в виде двоичной записи, а не в виде закодированных символов. Мы говорим «в виде двоичной записи», потому что обычная двоичная система счисления описывает только основы нескольких способов хранения числовой информации, используемые в машинах. Некоторые из этих вариантов двоичной системы счисления обсуждаются далее в этой главе. Сейчас мы просто обращаем внимание на то, что для хранения целых чисел принята система кодирования, называемая представлением в дополнительном коде, потому что она дает возможность кодирования и положительных, и отрицательных чисел. Для хранения чисел с дробной частью, таких как 4 (1/2) используется другая форма, называемая представлением чисел с плавающей точкой. Таким образом, отдельное значение (например, 25) может быть представлено различными последовательностями битов (как символ, закодированный в стандарте ASCII; в представлении в дополнительном коде или в форме с плавающей точкой, как 25%), и наоборот, отдельную последовательность битов можно интерпретировать по-разному.
В завершение этого раздела следует упомянуть проблемы, связанные с системами хранения чисел, которые мы рассмотрим позже. Независимо от размера области памяти, которую машина может выделить для хранения числового значения, все равно будут появляться слишком большие целые числа или слишком маленькие дроби, не помещающиеся в эту область. Поэтому всегда существует возможность ошибок, таких как переполнение (число слишком большое) или усечение (дробь слишком маленькая). С ними необходимо бороться, иначе ничего не подозревающий пользователь столкнется с множеством ошибочных данных.
