- •Предисловие
- •Введение
- •1Архитектура эвм
- •1.1 Биты и их хранение
- •1.1.1Вентили и триггеры
- •1.1.2Другие способы хранения битов
- •1.1.3Шестнадцатеричная система счисления
- •1.2 Оперативная память
- •1.2.1Структура памяти
- •1.2.2Измерение емкости памяти
- •1.3 Устройства хранения данных
- •1.3.1Магнитные диски
- •1.3.2Компакт-диски
- •1.3.3Магнитные ленты
- •1.3.4Хранение и поиск файлов
- •1.4 Представление информации в виде двоичного кода
- •1.4.1Представление текста
- •1.4.2Американский национальный институт стандартов
- •1.4.3Iso - международная организация по стандартизации
- •1.4.4Представление числовых значений
- •1.4.5Представление изображений
- •1.4.6Представление звука
- •1.5 Двоичная система счисления
- •1.5.1Альтернатива двоичной системе счисления
- •1.5.2Дроби в двоичной системе счисления
- •1.5.3Аналоговые и цифровые устройства
- •1.6 Хранение целых чисел
- •1.6.1Представление в двоичном дополнительном коде
- •1.6.2Сложение в двоичном дополнительном коде
- •1.6.3Проблема переполнения
- •1.6.4Представление с избытком
- •1.7 Хранение дробей
- •1.7.1Представление с плавающей точкой
- •1.7.2Ошибка усечения
- •1.8 Сжатие данных
- •1.8.1Общие методы сжатия данных
- •1.8.2Сжатие звука
- •1.8.3Сжатие изображений
- •1.9 Ошибки передачи данных
- •1.9.1Контрольный разряд четности
- •1.9.2Коды с исправлением ошибок
- •2Манипулирование данными
- •2.1 Архитектура эвм
- •2.1.1Сложение двух чисел, хранящихся в оперативной памяти
- •2.1.2Кто и что изобрел?
- •2.2 Машинный язык
- •2.2.1Система команд
- •2.2.2Кэш-память
- •2.2.3Арифметико-логические команды
- •2.2.4Команды управления
- •2.2.5Деление двух значений, хранящихся в памяти
- •2.3 Выполнение программы
- •2.3.1Пример выполнения программы
- •2.3.2Команды переменной длины
- •2.3.3Программы и данные
- •2.4 Арифметические и логические операции
- •2.4.1Логические операции
- •2.4.2Сравнение вычислительной мощности эвм
- •2.4.3Операции сдвига
- •2.4.4Арифметические операции
- •2.5 Связь с другими устройствами
- •2.5.1Связь через контроллер
- •2.5.2Строение шины
- •2.5.3Скорость передачи данных
- •2.6 Другие архитектуры
- •2.6.1Конвейерная обработка
- •3Операционные системы и организация сетей
- •3.13.1. Эволюция операционных систем
- •3.1.1Однопроцессорные системы
- •3.1.2Многопроцессорные системы
- •3.2 Архитектура операционной системы
- •3.2.1Программное обеспечение
- •3.2.2Полезное единообразие или вредная монополия?
- •3.2.3Компоненты операционной системы
- •3.2.4Операционная система linux
- •3.2.5Начало работы операционной системы
- •3.3 Координирование действий машины
- •3.3.1Понятие процесса
- •3.3.2Управление процессами
- •3.3.3Модель «клиент-сервер»
- •3.4 Обработка конкуренции между процессами
- •3.4.1Семафор
- •3.4.2Взаимная блокировка
- •3.5 Сети
- •3.5.1Основы организации сетей
- •3.5.2Интернет
- •3.5.3Топология сети Интернет
- •3.5.4Система адресов Интернета
- •3.5.5Электронная почта
- •3.5.6Всемирная паутина
- •3.6 Сетевые протоколы
- •3.6.1Управление правом отправки сообщений
- •3.6.2Сеть ethernet
- •3.6.3Javascript, апплеты, cgi и сервлеты
- •3.6.4Многоуровневый принцип программного обеспечения Интернета
- •3.6.5Комплект протоколов tcp/ip
- •3.6.6Протоколы рорз и imap
- •3.7 Безопасность
- •3.7.1Протокол защищенных сокетов
- •3.7.2Группа компьютерной «скорой помощи»
- •4Алгоритмы
- •4.1 Понятие алгоритма
- •4.1.1Предварительные замечания
- •4.1.2Формальное определение алгоритма
- •4.1.3Определение алгоритма
- •4.1.4Абстрактная природа алгоритма
- •4.2 Представление алгоритма
- •4.2.1Примитивы
- •4.2.2Псевдокод
- •4.3 Создание алгоритма
- •4.3.1Искусство решения задач
- •4.3.2Итеративные структуры в музыке
- •4.3.3Первый шаг в решении задачи
- •4.4 Итеративные структуры
- •4.4.1Алгоритм последовательного поиска
- •4.4.2Управление циклом
- •4.4.3Алгоритм сортировки методом вставок
- •4.5Рекурсивные структуры
- •4.5.1Поиск и сортировка
- •4.5.2Алгоритм двоичного поиска
- •4.5.3Управление рекурсивными структурами
- •4.6 Эффективность и правильность
- •4.6.1Эффективность алгоритма
- •4.6.2Проверка правильности программного обеспечения
- •4.6.3По ту сторону проверки правильности программ
- •5Языки программирования
- •5.1 Исторический обзор
- •5.1.1Ранние поколения
- •5.1.2Интерплатформенное программное обеспечение
- •5.1.3Независимость от машины
- •5.1.4Парадигмы программирования
- •5.2 Основные понятия традиционного программирования
- •5.2.1Культуры языков программирования
- •5.2.2Переменные и типы данных
- •5.2.3Структуры данных
- •5.2.4Константы и литералы
- •5.2.5Операторы присваивания
- •5.2.6Управляющие операторы
- •5.2.7Комментарии
- •5.3 Процедурные единицы
- •5.3.1Процедуры
- •5.3.2Событийно-управляемые программные системы
- •5.3.3Параметры
- •5.3.4Функции
- •5.3.5Операторы ввода-вывода
- •5.4 Реализация языка программирования
- •5.4.1Процесс трансляции программы
- •5.4.2Реализация java
- •5.4.3Компоновка и загрузка
- •5.4.4Пакеты разработки программного обеспечения
- •5.5 Объектно-ориентированное программирование
- •5.5.1Классы и объекты
- •5.5.3Конструкторы
- •5.5.4Дополнительные возможности
- •5.6 Параллельные операции
- •5.7 Декларативное программирование
- •5.7.1Логическая дедукция
- •5.7.2Язык программирования Prolog
- •6Разработка программного обеспечения
- •6.1 Разработка программного обеспечения
- •6.1.1Ассоциация по вычислительной технике
- •6.1.2Институт инженеров по электротехнике и электронике
- •6.2 Жизненный цикл программы
- •6.2.1Цикл как единое целое
- •6.2.2Разработка программного обеспечения на практике
- •6.2.3Этапы разработки программного обеспечения
- •6.2.4Анализ
- •6.2.5Проектирование
- •6.2.6Реализация
- •6.2.7Тестирование
- •6.2.8Современные тенденции
- •6.3 Модульность
- •6.3.1Модульная реализация программы
- •6.3.2Связь модулей системы
- •6.3.3Связность модуля
- •6.4 Методики проектирования
- •6.4.1Нисходящее и восходящее проектирование
- •6.4.2Модели проектирования
- •6.4.3Разработка открытых программных продуктов
- •6.5 Инструменты проектирования
- •6.6 Тестирование
- •6.7 Документация
- •6.8 Право собственности на программное обеспечение и ответственность
- •Часть 3 организация данных
- •7Структуры данных
- •7.1 Основы структур данных
- •7.1.1Опять абстракция
- •7.1.2Статические и динамические структуры
- •7.1.3Указатели
- •7.2 Массивы
- •7.3 Списки
- •7.3.1Непрерывные списки
- •7.3.2Реализация непрерывных списков
- •7.3.3Связные списки
- •7.3.4Поддержка абстрактного списка
- •7.4 Стеки
- •7.4.1Откат
- •7.4.2Реализация стека
- •7.5 Очереди
- •7.5.1Проблема указателей
- •7.6 Деревья
- •7.6.1Реализация дерева
- •7.6.2Сбор мусора
- •7.6.3Пакет бинарного дерева
- •7.7 Пользовательские типы данных
- •7.7.1Пользовательские типы
- •7.7.2Классы
- •7.7.3Описательное и процедурное знание
- •7.7.4Стандартная библиотека шаблонов
- •7.8 Указатели в машинном языке
- •8Файловые структуры
- •8.1 Роль операционной системы
- •8.1.1Таблицы размещения файлов
- •8.2 Последовательные файлы
- •8.2.1Обработка последовательных файлов
- •8.2.2Консорциум производителей программного обеспечения для www
- •8.2.3Текстовые файлы
- •8.2.4Текстовые и двоичные файлы
- •8.2.5Вопросы программирования
- •8.2.6Семантическая сеть
- •8.3 Индексация
- •8.3.1Основные положения индексации
- •8.3.2Вопросы программирования
- •8.3.3Расположение файлов на дисках
- •8.4 Хэширование
- •8.4.1Хэш-система
- •8.4.2Проблемы распределения
- •8.4.3Аутентификация посредством хэширования
- •8.4.4Вопросы программирования
- •9Структуры баз данных
- •9.1 Общие вопросы
- •9.2 Многоуровневый подход к реализации базы данных
- •9.2.1Система управления базой данных
- •9.2.2Распределенные базы данных
- •9.2.3Модели баз данных
- •9.3 Реляционная модель баз данных
- •9.3.1Вопросы реляционного проектирования
- •9.3.2Системы баз данных для персональных компьютеров
- •9.3.3Хронологические базы данных
- •9.3.4Реляционные операции
- •9.3.5Вопросы реализации
- •9.3.6Язык sql
- •9.4 Объектно-ориентированные базы данных
- •9.5 Поддержка целостности базы данных
- •9.5.1Пространственные базы данных
- •9.5.2Протоколы фиксации/отката изменений
- •9.5.3Блокировка
- •9.6 Воздействие технологий баз данных на общество
- •10Искусственный интеллект
- •10.1 Интеллект и машины
- •10.1.1Конечный результат или имитация
- •10.1.2Истоки искусственного интеллекта
- •10.1.3Тест Тьюринга
- •10.1.4Машина для решения головоломки из восьми фишек
- •10.2 Распознавание образов
- •10.3 Мышление
- •10.3.1Продукционные системы
- •10.3.2Интеллект, основанный на поведении
- •10.3.3Деревья поиска
- •10.3.4Эвристика
- •10.4 Искусственные нейронные сети
- •10.4.1Основные свойства
- •10.4.2Приложение теории
- •10.4.3Ассоциативная память
- •10.5 Генетические алгоритмы
- •10.6 Прочие области исследования
- •10.6.1Обработка лингвистической информации
- •10.6.2Рекурсия в естественных языках
- •10.6.3Роботы
- •10.6.4Системы баз данных
- •10.6.5Экспертные системы
- •10.7 Обдумывая последствия
- •10.7.1Сильный искусственный интеллект против слабого
- •11Теория вычислений
- •11.1 Функции и их вычисление
- •11.1.1Теория рекурсивных функций
- •11.2 Машины Тьюринга
- •11.2.1Основы машины Тьюринга
- •11.2.2Истоки машины Тьюринга
- •11.2.3Тезис Черча-Тьюринга
- •11.3 Универсальные языки программирования
- •11.3.1Скелетный язык
- •11.3.2Существуют ли инопланетяне?
- •11.3.3Универсальность скелетного языка
- •11.4 Невычислимая функция
- •11.4.1Проблема останова
- •11.4.2Неразрешимость проблемы останова
- •11.5 Сложность задач
- •11.5.1Измерение сложности задачи
- •11.5.2Пространственная сложность
- •11.5.3Полиномиальные и не полиномиальные задачи
- •11.5.5Детерминированность против недетерминированности
- •11.6Шифрование с открытым ключом
- •11.6.1Шифрование при помощи задачи о ранце
- •11.6.2Популярные системы шифрования
- •11.6.3Модульная арифметика
- •11.6.4Обратно к шифрованию
6.6 Тестирование
В разделе 4.6 мы обсуждали математические методы проверки правильности алгоритмов и пришли к выводу, что сегодня большая часть программного обеспечения проверяется с помощью тестирования. К сожалению, тестирование не дает точных результатов. Проводя тестирование, мы не можем с достоверностью сказать, что система программного обеспечения работает правильно, если только мы не проведем достаточное количество испытаний, которые будут включать все возможные сценарии. Но существует более тысячи разных путей, по которым может пойти простой цикл, содержащий оператор if-then-else, когда цикл выполняется только десять раз. Поэтому проверить все возможные пути сложной программы просто невозможно.
С другой стороны, разработчики программного обеспечения создали методы тестирования, которые с достаточно большой вероятностью позволяют обнаружить ошибки в программе. Одна из методик основывается на наблюдении, что ошибки в программном обеспечении имеют свойство скапливаться в одном месте. То есть опыт показывает, что некоторые модули большой системы содержат больше ошибок, чем другие модули. Поэтому, определив эти модули и проверив их более тщательно, чем остальные, можно выявить больше ошибок, чем если проверять все модули достаточно тщательно, но одинаковым образом. Это пример применения принципа Парето (Pareto principle), названного в честь итальянского социолога и экономиста Вильфредо Парето (Vilfredo Pareto, 1848-1923), который заметил, что небольшая часть населения Италии контролирует большую часть богатства страны. В общем, принцип Парето говорит о том, что часто можно достичь больших результатов, если прикладывать усилия в ограниченном пространстве.
Другой метод тестирования называется тестированием базового пути (basis path testing). В этом случае создается набор контрольных данных, которые бы подтверждали, что каждая команда программы выполняется по меньшей мере один раз. Для определения контрольных данных была разработана методика, в которой используется теория графов. Хотя при таком способе тестирования и невозможно гарантировать, что были проверены все пути программной системы, однако можно утверждать, что в процессе проверки каждый оператор выполнялся, по крайней мере, один раз.
В методах тестирования, основанных на принципе Парето и проверке базового пути, подразумевается, что нам известно внутреннее строение тестируемой системы. Поэтому эти способы тестирования можно отнести к категории тестирования методом «прозрачного ящика» (glass-box testing), когда человеку, проводящему испытание системы, известно ее строение. В отличие от этого, при тестировании методом «черного ящика» (black-box testing) внутреннее строение системы остается неизвестным. Такое тестирование выполняется с точки зрения пользователя. Основное внимание при этом уделяется не тому, как именно система выполняет задачу, а тому, выполняется ли задача правильно, точно и вовремя.
К тестированию методом «черного ящика» часто относят анализ граничного значения. В этом случае определяются граничные точки технических требований системы, и она проверяется в этих точках. Например, если система должна принимать входящие значения, заданные в определенном интервале, тогда она проверяется с наименьшим и наибольшим значениями. Или если система должна координировать действия, тогда она проверяется с использованием самых сложных действий.
Другой способ тестирования методом «черного ящика» — применение избыточности. Согласно этому подходу разные проектные группы или даже разные компании создают независимо друг от друга две программные системы, выполняющие одинаковые действия. Затем эти две системы проверяются с использованием одних данных и результаты проверки сравниваются. Ошибки определяются по расхождениям результатов тестирования. Этот метод часто используется при проверке космических систем.
Другая методика тестирования все более широко применяется разработчиками программного обеспечения, предназначенного для продажи. В этом случае часть предполагаемых покупателей снабжается предварительной версией программы, которая называется бета-версией (beta version). Прежде чем утвердить окончательную версию продукта и выпустить ее на рынок, разработчики пытаются выяснить, как программное обеспечение будет работать в реальных условиях.
Бета-тестирование позволяет не только выявить ошибки в системе. Оно позволяет получить мнение покупателя (как положительное, так и отрицательное), что помогает усовершенствовать рыночную стратегию. Кроме того, распространение бета-версии программного обеспечения помогает другим разработчикам создавать продукты, совместимые с этим программным обеспечением. Например, распространение бета-версии новой операционной системы способствует разработке совместимых с ней обслуживающих программ, и окончательная версия операционной системы появляется на прилавках магазинов вместе с сопутствующими продуктами. Наконец, существование бета-версии программного обеспечения стимулирует всеобщий интерес к продукту на рынке и увеличивает количество продаж.
