- •Введение
- •1. Минералы и руды меди
- •2. Подготовка медных руд и концентратов к металлургической переработке
- •2.1 Усреднение и шихтовка
- •2.2 Сушка мелких материалов
- •2.3 Окускование мелких материалов
- •3. Обжиг медных сульфидных концентратов .1 Термодинамика и кинетика реакций окисления сульфидов
- •3.2 Теоретические основы обжига в кипящем слое
- •4. Плавка сульфидных медьсодержащих материалов на штейн .1 Плавка на штейн в отражательных печах и электропечах
- •4.2 Плавка на штейн в шахтных печах .2.1 Типы шахтных печей
- •4.2.2 Полупиритная плавка
- •4.2.3 Медно-серная плавка
- •5. Автогенные процессы плавки медных руд и концентратов
- •5.1 Общие понятия
- •5.2 Плавка во взвешенном состоянии
- •5.3 Кислородно-взвешенная (факельная) плавка (кфп)
- •5.4 Кивцэтная плавка
- •5.5 Процесс «Норанда»
- •5.6 Процесс «Аусмелт»
- •5.7 Процесс» «Айзасмелт»
- •5.8 Процесс «Мицубиси»
- •6. Конвертирование медных штейнов
- •7. Огневое рафинирование меди
- •8. Электролитическое рафинирование меди
- •9. Гидрометаллургия меди
5.6 Процесс «Аусмелт»
Процесс «Аусмелт» разработан фирмой «Аусмелт»(Австралия). Агрегат для осуществления процесса представляет собой вертикальный огнеупорный цилиндр оборудованный сливными каналами, фурмой, системой автоматизации и газоходом ( Рисунок 1.13)
В рабочем пространстве печи можно выделить следующие зоны. Реакционная зона у конца фурмы. В зависимости от вида дутья она может быть окислительной, восстановительной или нейтральной.
Зона плавления, расположенная на поверхности шлака. Процессы плавления в этой зоне могут протекать в окислительной, восстановительной или в нейтральной среде.
Отстойная зона, расположенная на дне печи. Здесь происходит расслаивание и отстаивание металлической (Cu) и сульфидной фаз (матт) перед их выпуском из печи.
-зона горения и окисления; 2 - зона плавления; 3 - зона отстаивания; 4- зона догорания газов
Рисунок 1.13- Схема устройства печи процесса «Аусмелт».
Зона догорания газа, расположенная над ванной расплава. Здесь происходит догорание углеводородного топлива.
Одним из основных элементов плавильного агрегата является вертикальная фурма конструкции» «Сиромелт», состоящая из двух концентрических труб, выполненных из нержавеющей стали. (Рисунок 1.14).
В полость внутренней трубы помешена трубка меньших размеров для подачи жидкого топлива, распыляющегося через сопло. Воздух для охлаждения подают в межтрубную полость, образованную наружной и внутренней трубами. В этой полости вмонтированы устройства для закручивания газового потока. Возникающая при этом циркуляция газа охлаждает корпус фурмы и, что обеспечивает образование на её внешней поверхности гарнисажа. Сгорание топлива в смеси с воздухом происходит в камере зажигания в нижней части фурмы.
Фурму закрепляют на подъёмнике и помещают в специальное устройство, расположенное над печью в центральной её части. Установку фурмы по вертикальной оси и величину её заглубления осуществляют с помощью подъёмного механизма.
По мере разрушения нижней части фурмы её опускают, и продувка ванны продолжается. Номинальное заглубление фурмы в шлак составляет порядка 15см. Замену фурмы производят тогда, когда разрушится 1м её нижней части. К отработанной фурме приваривают новую трубу, соответствующего диаметра
- стальной корпус; 2-мазутная сетка; 3-мазутный фильтр; 4-устройство для закручивания воздушного поток
Рисунок 1.14 - Фурма конструкции «Сиромелт».
Фурму можно использовать для продувки шлакового и штейнового расплавов воздухом и топливом. В качестве топлива могут служить мазут, природный газ ил угольная пыль.
Образующийся на внешней поверхности фурмы шлаковый гарнисаж позволяет вводить дутьё глубоко в шлак, создавая интенсивное перемешивание расплава в ванне.
При поднятии фурмы процесс плавления может быть прерван. В этот период отстаивается металлическая и штейновая фазы, которые после отстаивания выпускаются из печи.
Получение черновой меди в процессе «Аусмелт» может осуществляться в двух агрегатах (г.Хуома, Китай). В плавильной печи получают штейн, а черновую медь получают в печи конвертирования. В этом случае технология процесса плавки включает подсушивание концентрата, который затем распределяется по бункерам. Из бункеров с помощью весовых дозаторов концентрат направляется на ленточный транспортёр, где смешивается с необходимым количеством флюсов. В качестве флюсов используются кварцит и реже известняк. Размеры кусков шихты не должны превышать 25 мм. Затем шихта поступает в плавильное отделение в смеситель, где смешивается и увлажняется.
Из смесителя шихта поступает в загрузочное устройство в верхней части печи. Первоначально в печь загружают твёрдый шлак до уровня порядка 2м. Затем шлак расплавляют, используя фурму в качестве кислородно-топливной горелки. После образования жидкой ванны шлака на его поверхность загружают шихту и приступают к её плавке.
Процесс плавления на штейн осуществляется водном агрегате, а процесс конвертирования в другом. Их конструкция и размеры практически не отличаются друг от друга. Высота печи составляет порядка 12 м, диаметр 4м, длина фурмы плавильной печи 13,6 м, конвертера -12,8 м. Плавильная печь и конвертер расположены каскадом, что обеспечивает естественный перелив расплава. Черновая медь из конвертера поступает на разливочную машину. Слитки на разливочной машине охлаждаются водой.
Шлак из плавильного отделения по закрытому жёлобу непрерывно протекает в печь отстойник, который обогревается мазутом. Шлак, содержащий 0,5-0,7% Cu из отстойника направляют на грануляцию.
Содержание меди в штейне составляет 58-62%, в черновой меди - более 95,8%. Конверторные шлаки содержат порядка Содержание меди в конверторном шлаке 8-12% Cu. Отходящие из плавильной печи газы содержат 11% SO2. В конвертерных газах содержится 13% SO2. На входе в сернокислотный цех концентрация SO2 в объёдинённом потоке газа составляет 6-8%. Извлечение меди в штейн составляет порядка 95%. Пылевынос из плавильной печи составляет 1%, , из конвертера -2%. Извлечение меди в черновую составляет 97,5%.
Охлаждение плавильного агрегата и конвертера осуществляется орошением кожуха печи оборотной водой.
Отходящие газы от плавильной печи проходят через котёл-утилизатор, сухие электрофильтры, смешиваются с конверторным газом и направляются в сернокислотный цех.
Процесс «Аусмелт» по сравнению с традиционной технологией (плавка на штейн, конвертирование в горизонтальных конверторах) обладает рядом преимуществ:
простота конструкции и лёгкость управления процессом;
высокая степень использования кислорода дутья (95%);
низкое содержание серы в черновой меди (менее1%);
высокое прямое извлечение в черновую медь (более 90%);
эффективная утилизация серы;
минимальные потери тепла, что позволяет перерабатывать низкосортные концентраты и техногенные отходы.
Особое внимание заслуживает простота управления процессом и его режимами с помощью оперативного излечения (погружения) фурмы. Печь «Аусмелт» является экологически безопасной, так как работает при разряжении, что предотвращает выброс сернистого газа в атмосферу цеха.
Короткий срок ввода печей в эксплуатацию, сравнительно низкие капитальные и эксплутационные затраты выгодно дополняют выше приведённые технологические преимущества.
