- •Раздел 1. Понятие информации. Общая характеристика процессов сбора, передачи, обработки и накопления информации 9
- •Тема 1.1. Предмет и задачи курса. Основные понятия и определения информатики 9
- •Тема 1.2. Представление информации в эвм 17
- •Раздел 2. Технические средства реализации информаЦионных процессов 28
- •Тема 2.1. История развития вычислительной техники. Типы современных компьютеров 28
- •Тема 2.2. Устройство персонального компьютера и принцип работы 44
- •Тема 2.3. Файловая система 71
- •Раздел 3. Программные средства реализации информационных процессов 79
- •Тема 3.1. Классификация программных средств 79
- •Тема 3.3. Введение в пакет Microsoft Officе. Текстовый процессор Microsoft Word 94
- •Тема 3.4. Табличный процессор Microsoft Excel 105
- •Раздел 5. Информационно вычислительные сети 246
- •Тема 5.1. Общие принципы построения информационно вычислительных сетей 246
- •Тема 5.3.Локальные и глобальные сети эвм 267
- •Раздел 6. Основы защиты информации 288
- •Тема 6.1. Основы информационной безопасности (иб) 288
- •Методические указания по использованию учебного пособия
- •Введение
- •Раздел 1. Понятие информации. Общая характеристика процессов сбора, передачи, обработки и накопления информации Тема 1.1. Предмет и задачи курса. Основные понятия и определения информатики
- •1.1.1. Основные понятия и определения
- •1.1.2. Информация и ее свойства
- •1.1.3. Информационные системы
- •Вопросы для самоконтроля
- •Тема 1.2. Представление информации в эвм
- •1.2.1. Представление информации в памяти эвм
- •Например, если для записи чисел с плавающей точкой используется 32 разрядное число, то биты этого числа могут распределяться следующим образом:
- •1.2.2.Общая характеристика процессов сбора, передачи, обработки и накопления информации
- •В соответствии с такой двоичной природой высказываний условились называть их логическими двоичными переменными и обозначать 1 в случае истинности высказывания и 0 в случае ложности.
- •Раздел 2. Технические средства реализации информаЦионных процессов Тема 2.1. История развития вычислительной техники. Типы современных компьютеров
- •2.1.1. История вычислительной техники
- •2.1.2. Поколения эвм
- •2.1.3. Типы современных компьютеров
- •2.1.4. Компьютерные системы и сети
- •2.1.5. История создания и развития персональных компьютеров
- •Типы современных компьютеров.
- •Тема 2.2. Устройство персонального компьютера и принцип работы
- •2.2.1.Обобщенная структурная схема персонального компьютера и принцип работы
- •2.2.2.Базовый состав технических средств персонального компьютера
- •2.2.3 Дополнительные устройства и их характеристики Возможности персональных компьютеров существенно расширяются при подключении различных периферийных устройств.
- •Вопросы для самоконтроля
- •Тема 2.3. Файловая система
- •2.3.1.Понятие и определение файла
- •Системные программные средства управления файлами.
- •2.3.2.Структура файловой системы
- •Раздел 3. Программные средства реализации информационных процессов Тема 3.1. Классификация программных средств
- •3.1.1. Программное обеспечение персональных компьютеров
- •3.1.2. Системные программные средства
- •3.1.3.Особенности систем Windows
- •Курсовая работа.Doc
- •3.1.4.Прикладные программы
- •Вопросы для самоконтроля
- •Тема 3.3. Введение в пакет Microsoft Officе. Текстовый процессор Microsoft Word
- •3.3.1. Понятие текстового процессора
- •3.3.2. Элементы интерфейса
- •3.3.3 Приемы работы с Microsoft Word
- •Тема 3.4. Табличный процессор Microsoft Excel
- •3.4.1. Назначение и основные элементы табличного процессора
- •3.4.2. Типы данных, используемые в Microsoft Excel
- •3.4.3. Формат ячеек электронной таблицы
- •3.4.4. Организация вычислений
- •3.4.5.Относительная и абсолютная адресация
- •3.4.6. Графическое представление данных
- •3.4.7. Функции, используемые в Microsoft Excel
- •Срзнач(в2;с7;а6)
- •1. Математические функции
- •2. Статистические функции
- •3. Функции для финансовых расчетов
- •4. Логические функции
- •3.4.8.Решение экономических и управленческих задач средствами ms Excel
- •Непосредственное использование этого пакета осуществляется с помощью команды Сервис – Анализ данных.
- •Раздел 4. Введение в алгоритмизацию и программирование Тема 4.1. Понятие алгоритма и алгоритмизации
- •4.1.1. Свойства алгоритма
- •4.1.2. Формы представления алгоритмов
- •4.1.3. Разновидности структур алгоритмов
- •4.1.4. Этапы решения задачи на компьютере
- •Тема 4.2. Структуры данных
- •4.2.1.Структуры данных
- •4.2.2 Линейные и нелинейные структуры
- •Тема 4.3. Базы данных
- •4.3.1. Понятия база данных и система управления базой данных
- •4.3.2. Классификация баз данных
- •4.3.3. Модели данных
- •4.3.4. Основные возможности субд
- •4.3.5. Возможности субд Microsoft Access
- •4.3.6. Построение запросов и отчетов
- •Вопросы для самоконтроля
- •Тема 4.4. Введение в программирование. Языки программирования высокого уровня
- •4.4.1. Введение в программирование
- •4.4.2. Программирование на языке Visual Basic
- •4.4.3.Стандартные элементы управления языка Visual Basic
- •4.4.4. Основы программирования
- •4.4.5.Программирование алгоритмов линейной структуры
- •4.4.6.Программирование алгоритмов разветвляющейся структуры
- •4.4.7.Программирование алгоритмов циклической структуры
- •4.4.8.Отладка программ
- •Вопросы для самоконтроля
- •Тема 4.5. Разработка макросов на языке Visual Basic For Applications
- •4.5.1.Понятие макросов и элементов управления
- •4.5.2.Лексика языка программирования Visual Basic For Applications
- •4.5.3.Применение vba в прикладных пакетах программ Word и Excel
- •5.1.2. Основные программные и аппаратные компоненты сети
- •5.1.3. Топология физических связей
- •5.1.4. Физическая передача данных по линиям связи
- •Последовательность операций при передаче данных
- •5.1.5. Открытые информационные системы
- •5.1.6. Сетевые операционные системы
- •Тема 5.3.Локальные и глобальные сети эвм
- •5.3.1. Общие требования к вычислительным сетям
- •5.3.2. Модели локальных вычислительных сетей
- •5.3.3. Принципы объединения сетей
- •5.3.4.Структура и основные принципы построения сети Internet
- •5.3.5.Основные понятия и определения сети Internet
- •Протокол://сервер/путь/имя_файла
- •5.3.6.Способы подключения к Internet
- •Вопросы для самоконтроля
- •Раздел 6. Основы защиты информации Тема 6.1. Основы информационной безопасности (иб)
- •Информационная безопасность и ее составляющие
- •6.1.2. Угрозы безопасности информации и их классификация
- •6.1.3. Законодательные и иные правовые акты рф, регулирующие правовые отношения в сфере иб и защиты государственной тайны
- •6.1.4. Системный подход к обеспечению безопасности
- •6.1.5 Методы защиты информации
- •6.1.6.Резервирование информации
- •6.1.7. Защита информации в локальных компьютерных сетях, антивирусная защита
- •Речь в основном идет об умышленном воздействии на вычислительные сети.
- •6.1.8. Современные программные средства борьбы с вирусами
- •Вопросы для самоконтроля
- •Литература
5.1.4. Физическая передача данных по линиям связи
Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: проводники, оптическое волокно и естественная среда распространения. Реально среда передачи данных может представлять собой кабель или окружающее пространство. Линии связи или линии передачи данных это специальная аппаратура и физическая среда, по которой передаются информационные сигналы. Канал передачи данных это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру приема передачи данных. Каналы передачи данных связывают между собой источники и приемники информации. В зависимости от физической среды передачи данных каналы связи можно разделить на:
проводные линии связи;
кабельные, исполняемые в виде "витой пары", коаксиального кабеля или оптоволоконного кабеля;
беспроводные, использующие электромагнитные волны для передачи сигналов по радиоканалам наземной и спутниковой связи,
Проводные линии связи, которые используются для передачи телефонных и телеграфных сигналов, применяются также и для передачи компьютерных данных. Такие линии связи имеют существенные недостатки:
низкая скорость передачи данных;
слабая помехозащищенность;
возможность несанкционированного подключения к сети.
Кабельные линии связи, применяемые в вычислительных сетях, бывают следующих типов: Витая пара — представляет собой пару( несколько пар) скрученных медных проводов, заключенных в экранированную оболочку. Витая пара является достаточно помехоустойчивой. Данный кабель является самым дешевым и распространенным видом связи, который нашел широкое применение в самых распространенных локальных сетях с архитектурой Ethernet, построенных по топологии типа “звезда”. Кабель подключается к сетевым устройствам при помощи соединителя RJ45. Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Витая пара обычно используется для связи на расстояние не более нескольких сот метров.
К недостаткам кабеля "витая пара" можно отнести возможность простого несанкционированного подключения к сети. Коаксиальный кабель это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана. Внешний проводящий экран кабеля покрывается изоляцией. Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5 мм и толстый коаксиальный кабель диаметром 10 мм. У толстого коаксиального кабеля меньше затухание.
Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой. Коаксиальный кабель применяется, например, в локальных сетях с архитектурой Ethernet, построенных по топологии типа “общая шина”. Коаксиальный кабель более помехозащищенный, чем витая пара и имеет меньшее собственное излучение. Пропускная способность – 50 100 Мбит/с.
Допустимая длина линии связи – несколько километров. Несанкционированное подключение к коаксиальному кабелю сложнее, чем к витой паре. Оптоволоконный кабель – это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой. Информация передается по оптическому волокну с помощью электромагнитных волн оптического диапазона.
Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон. На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование. Основное преимущество этого типа кабеля – чрезвычайно высокий уровень помехозащищенности и отсутствие собственного излучения.
Кроме того, один такой кабель позволяет организовать огромное количество каналов связи.
Несанкционированное подключение очень сложно. Скорость передачи данных 3Гбит/c.
Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.
Беспроводные каналы связи – это радиоканалы наземной (радиорелейной и сотовой) и спутниковой связи. Радиорелейные каналы связи. Радиорелейные каналы связи состоят из последовательности приемо передающих станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями до 50 км.
Спутниковые каналы связи. В спутниковых системах радиосигналы от наземных станций принимаются спутниковым приемником и ретранслируются обратно на наземные станции. Спутники размещаются на орбитах таким образом, чтобы обеспечить охват почти всей поверхности Земли.
Спутниковая связь организуется между станциями, расположенными на очень больших расстояниях для обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c. Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо передающих станций и сотового коммутатора. Базовые станции подключаются к центру коммутации, который обеспечивает связь, как между базовыми станциями, так и с другими телефонными сетями и с глобальной сетью Интернет. По выполняемым функциям центр коммутации аналогичен обычной АТС проводной связи. Скорость передачи данных до 45 Мбит/c. Радиоканалы MMDS. Эти системы способна обслуживать территорию в радиусе 50—60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с —56 Мбит/с на один канал. Радиоканалы для локальных сетей. Стандартом беспроводной связи для локальных сетей является технология Wi Fi.
Wi Fi обеспечивает подключение в двух режимах: точка точка для подключения двух ПК и инфраструктурное соединение для подключения несколько ПК к одной точке доступа. Скорость обмена данными до 11 Mбит/с при подключении точка точка и до 54 Мбит/с при инфраструктурном соединении. Радиоканалы Bluetooht это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с.
