- •1.1. Випрямні діоди
- •1.2. Високочастотні діоди
- •1.3. Діоди Шотткі
- •1.4. Імпульсні діоди
- •1.5. Діоди Зенера
- •1.6. Фотодіоди, світлодіоди
- •Матеріал напівпровідника залежно від кольору світло діоду
- •1.7. Тунельні діоди та діоди Ганна
- •2.1. Загальні відомості
- •2.2. Біполярні транзистори
- •2.2.1. Будова та принцип дії біполярного транзистора
- •2.2.2. Класифікація біполярних транзисторів
- •Класифікація транзисторів
- •2.2.3. Режим роботи біполярного транзистора
- •2.2.4. Основні та н-параметри біполярного транзистора
- •2.2.4. Схеми включення біполярних транзисторів
- •2.3. Польові транзистори
- •2.3.1. Будова та основні види польових транзисторів
- •2.3.2 Статичні характеристики польового транзистора з керуючим р-n-переходом
- •2.3.4. Польові транзистори з індукованим каналом
- •2.4. Біполярні транзистори бтіз
- •Колектор
- •3.1. Загальні відомості
- •3.2. Класифікація та умовні графічні позначення тиристорів
- •Тиристори
- •Діодні тиристори (діністори)
- •3.3. Будова, принцип роботи тиристорів
- •3.4. Диністори
- •3.5. Симістори
- •4.1. Загальні відомості
- •4.2. Транзисторний ключ
- •4.3. Логічні елементи
- •4.4. Двійкові логічні операції з цифровими сигналами
- •1. Заперечення, ні
- •2. Повторення, так
- •3. Кон’юнкція (логічне множення). Операція 2і.
- •4. Диз’юнкція (логічне додавання). Операція або.
- •5. Інверсія функції кон'юнкції. Операція 2і-не
- •6. Інверсія функції диз’юнкції. Операція 2 або-ні
- •7. Еквівалентність (рівнозначність), 2 виключаючи або-ні
- •8. Складання по модулю 2 ( виключаючи або, нерівнозначність). Інверсія рівнозначності
- •4.5. Закони алгебри логіки
- •5.1. Загальні відомості
- •5.2. Класифікація підсилювачів електричних сигналів
- •5.2.1. Простий однокаскадний підсилювач постійного струму
- •5.2.2. Простий однокаскадний підсилювач змінного струму
- •5.2.3. Диференційні підсилювачі
- •5.2.4. Каскади підсилення на польових транзисторах
- •5.2.5. Каскади підсилення в інтегральному виготовленні
- •Попередній інтегральний підсилювач:
- •5.2.6. Підсилювачі потужності
- •5.2.7. Багатокаскадні підсилювачі
- •5.2.7. Зворотний зв’язок у підсилювачах
- •6.1. Основні уявлення та визначення
- •6.2. Інвертуючий підсилювач
- •Неінвертуючий підсилювач
- •6.4. Інтегруючий підсилювач
- •6.5. Диференціюючий підсилювач
- •6.6. Компаратор
- •6.7. Підсилювач змінного струму на оп
- •6.8. Суматор із багатьма входами
- •6.9. Масштабний підсилювач
- •6.10. Логарифмічний підсилювач
- •7.1. Загальне уявлення
- •7.2. Трансформатори
- •7.2.1. Конструкція трансформаторів
- •7.2.2. Розрахунок трансформаторів
- •7.3. Некеровані випрямлячі
- •7.3.1. Схемотехнічні рішення некерованих випрямлячів
- •7.3.2. Однонапівперіодний випрямляч
- •7.3.3. Двонапівперіодний випрямляч
- •7.3.4. Випрямлячі – помножувачі напруги
- •7.3.5. Трифазні випрямлячі
- •7.4. Згладжувальні фільтри
- •Коефіцієнт пульсацій
- •7.4.1. Ємнісні фільтри
- •7.4.2. Індуктивні фільтри
- •7.4.4. Електронні фільтри
- •7.5. Стабілізатори
- •7.5.1. Параметричний стабілізатор напруги
- •7.5.2. Компенсаційні стабілізатори напруги
- •7.5.3. Мікросхемні стабілізатори напруги
- •7.5.4. Імпульсні стабілізатори напруги
- •7.6. Керовані випрямлячі
- •7.6.1. Керовані випрямлячі на транзисторах
- •7.6.2.Трифазні керовані випрямлячі
- •7.7. Інвертори
- •7.7.1. Транзисторний інвертор з насичуванням трансформатора
- •7.7.2. Однотактний транзисторний інвертор напруги
- •7.7.3. Тиристорні інвертори
- •8.1. Загальні відомості та визначення
- •8.2 Тригери та їх реалізація на базі логічних елементів
- •8.2.1. Асинхронний rs-тригер
- •8.2.2. Синхронний тригер
- •8.2.3. Лічильний т-тригер
- •9.3. Лічильники імпульсів
- •8.4. Регістри
- •8.5. Дешифратори
- •8.6. Мультиплексори
- •8.7. Запам’ятовуючі пристрої
- •8.8. Цифрові перетворювачі
- •8.8.1. Цифро-аналогові перетворювачі
- •8.8.2. Аналого-цифровий перетворювач
- •9.1. Загальні відомості
- •9.2. Принцип отримання незатухаючих гармонійних коливань
- •9.5. Генератори імпульсів
- •10.1. Загальні відомості та визначення
- •10.2. Система команд мікропроцесорів
- •10.3. Організація та призначення шин
- •10.4. Принципи побудови мікропроцесорних систем
- •10.5. Подання чисел у мікропроцесорах
- •10.6. Архітектура мікропроцесорів
- •10.7. Багатоядерні процесори
7.1. Загальне уявлення
Джерело живлення – елемент електричного кола, в якому зосереджена електрорушійна сила. Джерела живлення характер-ризуються значенням електрорушійної сили і внутрішнього опору.
До джерел живлення належать:
гальванічні елементи;
електрохімічні батареї; акумулятори;
термопари;
сонячні батареї;
електричні генератори різного типу.
В залежності від електрорушійної сили джерела живлення поділяють на джерела живлення постійного струму і джерела живлення змінного струму.
Розрізняють первинні джерела живлення, які безносе-редньо перетворюють інші види енергії в електричну і вторинні джерела живлення, які виконують роль проміжних перетворювачів електричної енергії, такі як блоки живлення електронних приладів, трансформатори тощо.
Для електронних пристроїв та приладів в основному використовують вторинні джерела живлення, завдання яких:
Забезпечення передачі потужності. – передача заданої потужності з найменшими втратами і дотриманням заданих характеристик на виході.
Перетворення форми напруги – перетворення змінної напруги в постійну, і навпаки.
Перетворення величини напруги – як підвищення, так і зниження.
Стабілізація – напруга, струм та інші параметри на виході джерела живлення повинні лежати в певних межах.
Блок живлення – вторинне джерело живлення електро-приладу електричною енергією, при відповідності вимогам її параметрів: напруги, струму тощо.
За способом перетворення рівня напруги блоки живлення поділяються на: трансформаторні та без трансформаторні (імпульсні).
За конструктивним виконанням: вбудовані та зовнішні.
За областю використання: побутові та промислові.
7.2. Трансформатори
Трансформатор – це статичний електромагнітний апарат, який призначений для перетворення однієї – первинної систем змінного струму, в другу – вторинну систем змінного струму, яка має інші характеристики, зокрема, іншу напругу і інший струм. Основними характеристиками, що визначають технічний рівень трансформаторів, є втрати електроенергії (холостого ходу та короткого замикання), матеріалоємність (витрата електротехнічної та конструкційної сталі, обмотувального проводу, електроізоляційних матеріалів, трансформаторного масла та ін.), якість виготовлення, надійність та зручність обслуговування в експлуатації.
Найпростіший однофазний трансформатор складається з двох обмоток та сталевого осердя (рис. 6.1.)
Рис.7.1. Однофазний трансформатор
Магнітна система трансформатора являє собою комплект пластин або інших елементів, виготовлених з електротехнічної сталі або іншого феромагнітного матеріалу.
При живленні первинної обмотки змінним струмом частотою f буде створюватися змінний магнітний потік Ф:
Ф = Фm · sinώt , Вб. (7.1)
Якщо в первинній обмотці трансформатора ώ1 витків, то ЕРС первинної обмотки визначається за формулою:
E1 = 4,44 ∙ώ1∙Фm,В. (7.2)
Якщо у вторинній обмотці трансформатора ώ 2 витків, то ЕРС вторинної обмотки визначається за формулою:
E2 = 4,44 ∙ώ2∙Фm,В. (7.3)
Відношення ЕРС первинної і вторинної обмоток (відно-шення наявності їх витків) називають коефіцієнтом трансформації і визначають за формулою:
(7.4)
В процесі роботи трансформатора під навантаженням частина активної потужності Р1, що надходить в первинну обмотку з мережі, розсіюється в трансформаторі на покриття втрат. В результаті активна потужність Р2, що надходить в навантаження, виявляється меншою потужності Р1 на величину сумарних втрат в трансформаторі ΣР
P1 = P2 + ΣP.
В трансформаторі існує два види втрат – магнітні і електричні. Магнітні втрати Рм в стальному магнітопроводі, по якому замикається магнітний потік Фmax, складаються з витрат на гістерезис Рг, вихрові струми Рвх
Рм = Рг + Рвх.
Магнітні втрати прямо пропорційні масі магнітопроводу і квадрату магнітної індукції в ньому. Вони також залежать від властивостей сталі, з якої виготовлений магнітопровід. Зменшенню втрат на гістерезис сприяє виготовлення магнітопроводу з феромагнітних матеріалів (електротехнічної сталі), що володіють невеликою коерцитивною силою (вузькою петлею гістерезису).
Для зменшення втрат на вихрові струми магнітопровід виготовляють шихтованим (з тонких стальних пластин, ізольованих одна від одної тонким шаром лаку або оксидної плівки) або витим з стальної стрічки.
Магнітні втрати залежать також і від частоти змінного струму: з підвищенням частоти f магнітні втрати підвищуються за рахунок втрат на гістерезис Рг та вихрові струми Рвх.
Головний магнітний потік в магнітопроводі не залежить від навантаження трансформатора, тому при змінах навантаження магнітні втрати залишаються практично незмінними.
