- •Прогнозирование и планирование в условиях рынка Учебное пособие
- •Предисловие
- •Методологические основы экономического прогнозирования
- •1.1. Сущность и содержание экономического прогнозирования
- •1.2. Методы экономического прогнозирования
- •Вопросы для самоконтроля
- •202. Квартал – год;
- •204. До 1 месяца.
- •304. Каково состояние объекта в настоящий момент?
- •601. Оперативный;
- •2.1. Метод наименьших квадратов
- •2.2. Метод скользящей средней
- •2.3. Метод экспоненциального сглаживания
- •3. Корреляционно-регрессионный анализ в прогнозировании
- •3.1. Основные понятия корреляционно-регрессионного анализа
- •3.2. Методика корреляционно-регрессионного анализа
- •4. Прогнозирование на основе производственных функций
- •4.1. Основные понятия и типы производственных функций
- •4.2. Построение производственной функции
- •5.1. Модель равновесного выпуска
- •6.2. Модель равновесных цен
- •6. Прогнозирование на основе эвристических методов
- •6.1. Индивидуальные экспертные оценки
- •6.2. Коллективные экспертные оценки
- •6.3. Методика проведения экспертных опросов
- •I часть
- •680042, Г. Хабаровск, ул. Тихоокеанская, 134, хгаэп, риц
3. Корреляционно-регрессионный анализ в прогнозировании
3.1. Основные понятия корреляционно-регрессионного анализа
Большинство явлений и процессов в экономике находятся в постоянной взаимной и объективной связи. Исследование зависимостей и взаимосвязей между объективно существующими явлениями и процессами играет большую роль в экономике. Оно дает возможность глубже понять сложный механизм причинно-следственных отношений между явлениями. Для исследования интенсивности, вида и формы зависимостей широко применяется корреляционно-регрессионный анализ, который является методическим инструментарием при решении задач прогнозирования и планирования.
Различают два вида зависимостей между экономическими явлениями и процессами: функциональную и стохастическую (вероятностную, статистическую).
В случае функциональной зависимости имеется однозначное отображение множества А на множество В. Множество А называют областью определения функции, в множество В - множеством значений функции.
Функциональная зависимость встречается редко. В большинстве случаев функция (Y) или аргумент (Х) – случайные величины. Х и Y подвержены действию различных случайных факторов, среди которых могут быть факторы, общие для двух случайных величин.
Статистической называется зависимость между случайными величинами, при которой изменение одной из величин влечет за собой изменение закона распределения другой величины. В этом случае говорят о корреляционной зависимости. В экономике приходится иметь дело со многими явлениями, имеющими вероятностный характер. Например, к числу случайных величин можно отнести: стоимость продукции, доходы бюджетов и др.
Односторонняя вероятностная зависимость между случайными величинами есть регрессия. Она устанавливает соответствие между этими величинами.
Односторонняя стохастическая зависимость выражается с помощью функции, которая называется регрессией. В общем виде такая зависимость может быть представлена следующим образом:
Yit =f (Xkt, et ),
где Yit – i-я зависимая переменная в момент времени t, Xkt – k-я независимая переменная (фактор) в момент времени t, et – ошибка наблюдения в момент времени t.
Уравнение регрессии характеризует взаимосвязь переменных X и Y в том смысле, что показывает, как изменяется величина Y в зависимости от изменения величины Х.
Перечислим различные виды регрессии.
1. Регрессия относительно числа переменных:
- простая регрессия – регрессия между двумя переменными;
- множественная регрессия – регрессия между зависимой переменной Y и несколькими независимыми переменными Х1,Х2…Хm.
2. Регрессия относительно формы зависимости:
- линейная регрессия, выражаемая линейной функцией;
- нелинейная регрессия, выражаемая нелинейной функцией.
3. В зависимости от характера регрессии различают:
- положительную регрессию.Она имеет место, если с увеличением (уменьшением) независимой переменной значения зависимой переменной также соответственно увеличиваются (уменьшаются);
- отрицательную регрессию. В этом случае с увеличением или уменьшением независимой переменной зависимая переменная уменьшается или увеличивается.
Регрессия тесно связана с корреляцией. Корреляция в широком смысле слова означает связь, соотношение между объективно существующими явлениями. Связи между явлениями могут быть различны по силе. При измерении тесноты связи говорят о корреляции в узком смысле слова.
Понятия «корреляция» и «регрессия» тесно связаны между собой. В корреляционном анализе оценивается сила связи, а в регрессионном анализе исследуется ее форма. Корреляция в широком смысле объединяет корреляцию в узком смысле и регрессию.
Исследование корреляционных связей называют корреляционным анализом, а исследование односторонних стохастических зависимостей – регрессионным анализом. Корреляционный и регрессионный анализ имеют свои задачи.
К задачам корреляционного анализа относятся следующие:
1. Измерение степени связности (тесноты, силы) двух и более явлений.
2. Отбор факторов, оказывающих наиболее существенное влияние на результирующий признак, на основании измерения тесноты связи между явлениями.
3. Обнаружение неизвестных причинных связей. Корреляция непосредственно не выявляет причинных связей между явлениями, но устанавливает степень необходимости этих связей и достоверность суждений об их наличии. Причинный характер связей выясняется с помощью логически-профессиональных суждений, раскрывающих механизм связей.
Перечислим задачи регрессионного анализа:
1. Установление формы зависимости (линейная, нелинейная, положительная или отрицательная и т.д.)
2. Определение функции регрессии и установление влияния факторов на зависимую переменную. Важно не только определить форму регрессии, указать общую тенденцию изменения зависимой переменной, но и выяснить, каково было бы действие на зависимую переменную главных факторов, если прочие не изменились и если бы были исключены случайны элементы. Для этого определяют функцию регрессии в виде математического уравнения того или иного типа.
