Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика. 1-96_А41.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.67 Mб
Скачать

2. Взаимодействие между движущимися зарядами

Если два электрических заряда q и Q движутся парал­лельно друг другу со скоростью V (Рис. 20.1), то можно по­казать, что результирующая сила в заимодействия между ними будет равна

(20.1)

где С=108м/с - скорость света в вакууме. Она складывается из чис­то кулоновской силы и магнитной силы взаимного притяжения

(20.2)

где - магнитная постоянная. Сравнение Fе и Fm показывает, что магнитная сила значительно меньше электрической: Fm/Fg=V2/c2~10-24! Однако в обычном проводнике заряд электронов проводимости составляет порядка 105 Кл/м, и перемещение такого громадного за­ряда вызывает действие магнитных сил между проводниками.

3.Вектор индукции магнитного поля

Формулу (20.2) можно записать в виде

(20.3)

где величина В называется индукцией магнитного поля.

(20.4)

Точно так же, как для описания электростатического взаимодействия, ввели понятие электрического поля - пространства, окружающего неподвижный заряд Q (источник поля): для описания магнитного взаимодействия вводят понятие мaгнитного поля пространства, окружающего движущийся заряд Q. Оно обладает особым свойством - в любой его точке на другой движущийся заряд q действует магнитная сила. Т.о., магнитное поле порождается движущимися зарядами. Это также пространство вокруг проводников с током, вокруг постоянных магнитов, т.к. в них также имеются движущиеся электроны, входящие в состав атомов.

Вектор индукции В является силовой характеристикой магнитного поля, так же как напряженность Е - силовая характеристика электрического поля.

Величину индукции можно определить как магнитную силу, действующую на единичный заряд, движущийся со скоростью V перпендикулярно В:

(20.5)

Единица индукции в СИ 1 тесла (Т) — индукция магнитного поля в точке, где на заряд 1 Кл, движущийся со скоростью 1 м/с, действует сила 1 Н (1Т=Н∙с/Кл∙м=В∙с/м2). Определим направление вектора индукции. Т.к. при движении заряда Q со скоростью возникает магнитная сила, перпендикулярная е го скорости, то на движущийся заряд q, находящийся в направлении, перпендикулярном , действует Fm=Fmax, а если q движется вдоль направления , то Fm=0 (Рис.20.2). Следовательно В=f(α), где . Причем , значит величина В зависит от sinα, и для индукции магнитного поля, созданного точечным зарядом для произвольного направления, можно записать:

(20.6)

или в векторном виде:

(20.7)

Т .е. вектор лежит в плоскости, перпендикулярной плос­кости, где лежат и , и образует о ними правовинтовую систему .(Рис. 20.3), а силовые линии магнитного поля представляют концентрические окружности, охватывающие движущийся заряд. Поле движущегося заряда было об­наружено экспериментально (Роуланд 1877, А.А.Эйхенвальд 1901, А.Ф.Иоффе I9II).

4. Сила Лоренца

На заряд, движущийся со скоростью V в магнитном поле с индукцией В будет действовать согласно формуле (20.5) сила

(20.8)

Она называется силой Лоренца. Ее направление составляет право-винтовую систему со скоростью движения положительного заряда V и индукцией В (Рис.20.4). Если заряд отрицательный, то сила Лоренца имеет противоположное направление.

Величина силы Лоренца равна

(20.9)

где .

Т.к. сила Лоренца F перпендикулярна плоскости, где находится V и B, то с ила Лоренца перпендикулярна скорости и поэ­тому работы не совершает: , где и ΔА=0. Действие этой силы приводит лишь к искривлению траектории движения заряженных частиц в магнитном поле.