- •Физические основы классической механики
- •I. Механика. Общие понятия
- •2. Кинематика точки
- •3. Скорость
- •4. Ускорение
- •5. Примеры
- •I. Основные понятия
- •2. Законы механики
- •3. Инерциальные системы отсчёта (и.С.О.)
- •4. Принципы относительности Галилея
- •5. Закон сохранения импульса
- •6. Реактивное движение
- •7. Центр инерции
- •I. Работа
- •2. Энергия
- •3. Кинетическая и потенциальная энергии
- •4. Закон сохранения механической энергии
- •5. Удар абсолютно упругих и неупругих тел
- •I. Кинематика вращательного движения
- •2. Кинетическая энергия вращательного движения. Момент инерции.
- •3. Основное уравнение динамики вращательного движения
- •4. Момент импульса. Закон сохранения момента импульса
- •I. Принцип относительности
- •2. Постулаты Эйнштейна
- •3. Преобразования Лоренца
- •4. Замедление времени
- •5. Сокращение длин
- •6. Сложение скоростей в теории относительности.
- •7. Изменение массы со скоростью
- •8. Движение релятивистской частицы
- •9. Связь между массой и энергией
- •10. Кинетическая энергия. Энергия и импульс
- •Колебания и волны
- •1. Общие сведения о колебаниях
- •2. Механические колебания
- •3. Энергия гармонических колебаний
- •1. Предмет молекулярной физики
- •2. Термодинамические параметры.
- •3. Идеальный газ
- •4. Основное уравнение мкт газов для давления.
- •5. Газовые законы как следствие молекулярно-кинетической теории.
- •1. Скорости теплового движения молекул
- •2. Распределение молекул по скоростям (Закон Максвелла)
- •3. Закон распределения Больцмана
- •4. Число столкновений и средняя длина свободного пробега молекул
- •1. Внутренняя энергия идеального газа
- •2. Первое начало термодинамики
- •3. Работа при расширении газа
- •4. Теплоемкость идеальных газов
- •5. Адиабатический процесс
- •1. Характеристика тепловых процессов.
- •2. Принцип действия тепловой машины
- •3. Второе начало термодинамики
- •1. Энтропия
- •1. Отклонение свойств газов от идеальных.
- •2. Уравнение состояния реального газа (уравнение Ван-дер-Ваальса)
- •1. Критическое состояние вещества
- •1. Внутренняя энергия реального газа
- •1. Жидкости.
- •2. Поверхностное натяжение.
- •3. Явление смачивания.
- •4. Формула Лапласа.
- •5. Капиллярность.
- •1. Взаимодействие тел
- •2. Электрический заряд
- •3. Закон Кулона
- •4. Единицы заряда.
- •5. Электрическое поле.
- •6. Силовые линии. Поток вектора напряженности.
- •7. Теорема Гаусса.
- •1. Работа сил электрического поля.
- •2. Циркуляция вектора напряженности.
- •3. Потенциал электрического поля.
- •4. Связь потенциала с напряженностью поля.
- •5. Эквипотенциальные поверхности.
- •1. Проводники и диэлектрики.
- •2. Поляризационный заряды в диэлектриках.
- •3. Дипольная модель диэлектрика.
- •4. Типы диэлектриков
- •5. Вектор поляризации
- •6. Поляризация диэлектриков
- •7. Вектор поляризации и связанные заряды
- •8. Электрическое поле в диэлектриках.
- •9. Теорема Гаусса для диэлектриков.
- •10. Сегнетоэлектрики
- •1. Электрическое поле заряженного проводника
- •2. Электроемкость
- •3. Емкость проводящей сферы
- •4. Конденсаторы
- •5. Энергия электростатического поля
- •1. Электрический ток
- •2. Сила и плотность тока
- •3. Источники тока. Э.Д.С.
- •4. Закон Ома. Сопротивление проводников
- •5. Законы Кирхгофа
- •6. Работа и мощность тока
- •1.Свободные электроны в проводниках
- •2.Свойства электронного газа
- •3. Законы постоянного тока в электронной теории
- •4. Пределы применимости электронной теории.
- •1. Полупроводники
- •2. Собственная проводимость полупроводников
- •3. Примесная проводимость полупроводников
- •4. Применение полупроводников
- •1. Магнитные силы
- •2. Взаимодействие между движущимися зарядами
- •3.Вектор индукции магнитного поля
- •4. Сила Лоренца
- •5. Магнитное поле проводника с током. Закон Био-Савара-Лапласа
- •6. Магнитное поле токов
- •7. Действие магнитного поля на проводники c током
- •1. Магнитный поток
- •2. Работа магнитного пола по перемещению проводника о током
- •3. Закон полного тока
- •1.Основной закон электромагнитной индукции
- •2. Правило Ленца
- •3. Возникновение индукционного тока в витке
- •4. Явление самоиндукции
- •5. Магнитная проницаемость вещества
- •6. Энергия магнитного поля
3. Законы постоянного тока в электронной теории
С помощью модели электронного газа можно объяснить законы Ома и Джоуля-Ленца.
Если в металле имеется электрическое
поле
,
то на электрон будет действовать сила
,
и он будет двигаться с ускорением
,
пока не столкнется с ионом. Средний
путь, проходимый свободно движущимся
электроном между двумя последовательными
столкновениями с ионами решетки,
называется средней длиной свободного
пробега
.
Среднее время свободного пробега
.
Перед соударением скорость направленного
движения будет равна
.
Т.к. из-за столкновений движение электрона
хаотичное, за период между двумя
столкновениями электрон движется со
средней скоростью
,
и плотность тока при этом
(18.1).
Сопоставляя это с законом Ома (17.9)
,
получаем
(18.2)
Как видно в электронной теории плотность
тока пропорциональна напряженности
поля, как и на опыте; кроме того, эта
теория позволила найти выражение для
электропроводности металлов, из которого
видно: с увеличением температуры
электропроводность металлов уменьшается,
т.к.
,
что наблюдается на опыте.
К концу свободного пробега электроны приобретают под действием внешнего поля кинетическую энергию
Вся эта энергия передается кристаллической
решетке при соударениях и переходит в
тепло. Количество тепла w, выделяющееся
в единице объема металла за единицу
времени, будет равно w=W·n·z,
где n — концентрация
электронов,
— число столкновений электронов с
ионами за 1с.
или с учетом (18.2)
,
что представляет собой закон Джоуля-Ленца
в дифференциальной форме.
4. Пределы применимости электронной теории.
Как видно, электронная теория хорошо объясняет существование электрического сопротивления метало, законы Ома, Джоуля-Ленца, позволяет найти выражение для удельной электропроводности металлов. Эта теория объясняет и другие электрические и оптические свойства вещества.
Однако в некоторых вопросах эта теория дает расхождение с опытом.
Так, из опыта известно, что удельное
сопротивление проводников у
величивается
прямо пропорционально температуре. Как
видно из (18.2),
,
т.к. VT~
.
Т.о., теория дает лишь количественно
согласие с опытом (рис.18.1). Другим примером
служит теория теплоемкости электронного
газа и теплоемкости кристаллической
решетки. Поэтому теплоемкость металлов
должна быть намного выше, чем у
диэлектриков, у которых свободных
электронов нет. Однако опыт не подтверждает
этого.
Недостатки теории возникли вследствие того, что к электронам в металле нельзя применять законы механики Ньютона. Их движение подчиняется другим закономерностям, что рассматривает квантовая механика.
Однако электронная теория не утратила своего значения. Она позволяет во многих случаях быстро найти правильные качественные результаты в наглядной форме. Расхождение между электронной и квантовой теориями оказывается тем меньше, чем меньше концентрация электронов и выше температура. Поэтому при рассмотрении электронных явлений в газах и полупроводниках, где концентрация электронов значительно меньше, чем в металлах, электронная теория может быть применима не только качественно, но и количественно.
Лекция 19. ТОК В ПОЛУПРОВОДНИКАХ
