Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2011_Хашковский_курсовая НТС и ТР_ ТЕКСТкоррекц.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
738.58 Кб
Скачать

1. Тематика курсовой работы

Проблема обеспечения надежности и безопасности технических устройств на современном этапе индустриализации Российской Федерации, внедрения новых форм хозяйствования и формирования рыночных отношений, приобрела огромное значение. Научно-технический прогресс приводит к появлению все более сложных конструктивно и чрезвычайно опасных для обслуживающего персонала, населения и окружающей среды уникальных систем. Тяжелая авария на II блоке АЭС TMJ (США) в марте 1979 г., утечка ядовитых газов на химическом комбинате в Бхопале (Индия, 1984), взрыв многоразовых космических аппаратов «Челленджер» (1986) и «Колумбия» (2003), разрушение 4-го блока на Чернобыльской АЭС (1986), гибель атомной подводной лодки «Курск» (2001), авария на Саяно-Шушенской ГЭС (2009), взрыв на шахте «Распадская» (2010), авария на АЭС Фукусима (2011), показали, что проблема обеспечения безопасной и эффективной эксплуатации сложных систем еще далека от своего решения. Человеческие жертвы, радиоактивное заражение больших участков местности, огромные экономические потери – вот характерные результаты отказов таких систем.

В массовом производстве, степень интенсификации технологических процессов, производительность труда, объем промышленной продукции и безопасность работ в значительной степени также определяются надежностью составляющих элементов, оборудования, систем.

В процессе подготовки специалистов по безопасности жизнедеятельности в техносфере необходимо сформировать навыки самостоятельного исследования проблем безопасности технических объектов, углубленного изучения имеющегося справочного и нормативного материала. При выполнении курсовой работы по дисциплине «Надежность технических систем и техногенный риск» большое значение придается умению студента применить полученные ранее теоретические знания по системному анализу, теории риска.

Курсовая работа включает в себя аналитическую и расчетную части. Аналитическая часть представляет собой характеристику различных технических объектов с точки зрения надежности и безаварийности их работы, сложности решения этих задач, рассмотрения теоретических и практических вопросов техногенной безопасности. Расчетная часть заключается в решении типовых примеров и задач по теории надежности и безопасности.

Образец титульного листа и бланка задания на курсовую работу и примерный перечень тем курсовой работы приведены в приложениях 1 и 2.

2. Техногенный риск и надежность технических систем

Риск или степень риска – это сочетание частоты (или вероятности) и последствий определенного опасного события. При этом опасность может быть связана с определенным источником потенциального ущерба, вреда или с ситуацией, которая характеризуется возможностью нанесения ущерба [1].

Объект, производство, на котором используют, производят, перерабатывают, хранят, или транспортируют пожароопасные и (или) опасные химические вещества, создающие реальную угрозу возникновения аварии, называют опасным производственным объектом – ОПО [2]. Аварии на таких промышленных объектах могут привести к чрезвычайным техногенным ситуациям – т. е. состоянию, при котором на объекте, определенной территории, акватории нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносится ущерб имуществу населения, народному хозяйству и окружающей природной среде. Кроме ОПО, многие технические системы и объекты (энергообеспечения, транспортировки и перемещения грузов, работающие под повышенным или пониженным давлением), также характеризуются значительной опасностью для персонала.

При оценке техногенного риска на технических объектах (опасных производственных объектах – ОПО) рассматривают события [3]:

А – авария на техническом объекте;

Сi – реализация аварии по i-му сценарию;

Bi – причинение ущерба уi при реализации i-го сценария.

На рис. 2.1 проиллюстрирована последовательность событий, которые могут быть связаны с возникновением аварии на оборудовании предприятия по хранению нефтепродуктов и возможными сценариями развития аварии.

В соответствии с определением риска, техногенный риск R эксплуатации технического объекта, можно представить как математическое ожидание причиняемого ущерба Y:

(2.1)

где Р(Вi) – вероятность причинения ущерба уi техническому объекту и (или) сторонним объектам.

Перелив

Механические повреждения

Коррозионный и механический износ

Разгерметизация

оборудования

Терроризм,

стихийные бедствия, соседние ОПО

Выброс продукта

Паро-газовая фаза

Жидкая фаза

Локализация

разлива,

ликвидация

последствий

Взрыв

Пожар

Эффект

«Домино»

Токсичного

Пожароопасного

Взрывоопасного

Интоксикация

людей

Разрушение аппаратуры,

сооружений,

травмирование людей

Рис. 2.1. Возможные причины возникновения и сценарии развития аварийной ситуации на технологическом оборудовании нефтебазы

Формулу (2.1) можно разбить на два слагаемых – риск аварии RA и штатный риск RШ , т. е.

(2.2)

где ynj – размер средних ущербов, причиняемых техническому объекту и сторонним объектам при штатном функционировании технического объекта. К основным из них относят убытки технического объекта от деятельности других субъектов yтэо и платы за загрязнение окружающей среды yoc.

Риск аварии , как при проектировании, так и при эксплуатации технического объекта оценивается в рамках декларирования промышленной безопасности технического объекта, если он относится к категории ОПО или иных процедур, требующих проведения анализа риска. Члены произведения первого слагаемого формулы (2.2) отличаются от аналогичных членов второго слагаемого тем, что величины вероятностей, как правило, очень малы, а величины ущербов наоборот могут быть очень высокими.

Для оценки риска аварии технического объекта RA определим событие Вi через события А и Сi, воспользовавшись логической операцией умножения событий:

(2.3)

Поскольку события А и Сi являются совместными и зависимыми, искомая вероятность события Bi, связанного с причинением ущерба уi, определяется как:

, (2.4)

где P(Ci A– условная вероятность реализации сценария Ci при возникновении аварии (события А).

Подставляя выражение (2.4) в формулу (2.2), получаем:

. (2.5)

В более сжатом виде для риска аварии RA:

. (2.6)

Первый член [Р(А)] произведения в выражении (2.6) определяется инициирующими событиями аварии (причинами), а второй – , – последствиями возможной аварии в соответствии со сценарием её развития.

Анализ безопасности, т. е. оценка последствий возможных аварий на техническом объекте (нахождение в выражении (2.6) второго члена) – в настоящее время достаточно изученный вопрос. Существуют разнообразные методики оценок последствий, которые хорошо зарекомендовали себя в практике декларирования промышленной безопасности [4, 5, 6, 7, 8, 9 и др.].

Эти методики позволяют при анализе безопасности оценить последствия возможных аварий применительно к конкретному объекту, учесть его индивидуальную специфику (место расположения, энергетические запасы, особенности технологии и т. д.) и вычислить условные вероятности реализации каждого из возможных сценариев развития аварии.

Сложнее определить вероятность возникновения самой аварии – Р(А). Существующие методики оценки Р(А) сложны, громоздки и трудоемки в основном из-за отсутствия, неточности и неопределенности исходных данных. Поэтому на практике, обычно Р(А) принимают, как среднестатистическую по отрасли для данного типа технического объекта (ОПО), что, к сожалению, не отражает специфики объекта. К тому же из рассмотрения зачастую выпадают некоторые причины возникновения аварий, и соответственно становится затруднительным рекомендовать индивидуальные меры безопасности, направленные на предупреждение аварии на конкретном объекте, хотя, как показывает практика, меры по снижению вероятности аварии на два-три порядка эффективнее мер, направленных на снижение возможных ущербов по критерию «затраты–результаты» [11]. Одним из направлений определения величины Р(А) является применение методов теории надежности для оценки безопасности технического объекта.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]