Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ ЭМА.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
10.86 Mб
Скачать

Порядок выполнения работы:

  1. Выполнить расчет и начертить схему по данным задания.

  2. Составить отчет.

  3. Ответить на контрольные вопросы.

Ход работы:

Внимательно изучить примеры расчетов и построений данной практической работы. Рассчитать и построить развернутые схемы для обмоток якоря по следующим данным:

  1. Машина постоянного тока четырехполюсная 2р=4; обмотка петлевая правоходная, содержит 18 секций.

  2. Машина постоянного тока четырехполюсная 2р=4; обмотка волновая правоходная, содержит 17 секций.

Контрольные вопросы:

  1. В чем принципиальное отличие обмоток якоря от обмоток статора бесколлекторных машин переменного тока?

  2. Какими параметрами характеризуется обмотка якоря?

  3. Сколько параллельных ветвей имеет обмотка якоря шестиполюсной машины в случаях простой петлевой и простой волновой обмоток?

  4. Во сколько раз изменится ЭДС обмотки якоря шестиполюсной машины, если простую волновую обмотку заменить простой петлевой при том же числе секций?

  5. Что такое магнитная несимметрия и каковы ее последствия?

  6. В каких обмотках якоря применяют уравнители первого и второго рода?

  7. Каковы достоинства комбинированной обмотки?

  8. Как влияют ширина секции и положение щеток на ЭДС машины?

  9. Какими соображениями руководствуются при выборе типа обмотки якоря?

Практическая работа №3

Тема: «Расчет электромагнита постоянного тока».

Цель: Сформировать умение выполнять расчёт обмотки электромагнита постоянного тока.

По окончании выполнения лабораторной работы студент должен

знать:

  • назначение, устройство, область применения, принцип работы и виды электромагнитов;

  • характеристики электромагнитов;

уметь:

  • рассчитывать параметры обмотки электромагнита постоянного тока;

  • пользоваться справочной литературой.

Основные теоретические положения:

Электромагниты нашли в аппаратостроении широкое применение и как элемент привода аппаратов (контакторы, пускатели, реле, автоматы, выключатели), и как устройство, создающее силы, например, в муфтах и тормозах.

При заданном потоке падение магнитного потенциала уменьшается с уменьшением магнитного сопротивления. Так как сопротивление обратно пропорционально магнитной проницаемости материала, при данном потоке магнитная проницаемость должна быть возможно выше. Это позволяет уменьшить м.д.с. обмотки и мощность, необходимую для срабатывания электромагнита; уменьшаются размеры обмоточного окна и всего электромагнита. Уменьшение м.д.с. при прочих неизменных параметрах уменьшает температуру обмотки.

Вторым важным параметром материала является индукция насыщения. Сила, развиваемая электромагнитом, пропорциональна квадрату индукции. Поэтому чем больше допустимая индукция, тем больше развиваемая сила при тех же размерах.

После того, как обмотка электромагнита обесточивается, в системе существует остаточный поток, который определяется коэрцитивной силой материала и проводимостью рабочего зазора. Остаточный поток может привести к залипанию якоря. Во избежание этого явления требуется, чтобы материал обладал низкой коэрцитивной силой.

Существенными требованиями являются низкая стоимость материала и его технологичность.

Наряду с указанными свойствами магнитные характеристики материалов должны быть стабильны (не изменяться от температуры, времени, механических ударов).

В результате расчета магнитной цепи определяется не­обходимая магнито-движущая сила (МДС) обмотки. Обмотка должна быть рассчитана таким образом, чтобы, с одной стороны, обеспечить требуе­мую МДС, а с другой – чтобы ее максимальная темпера­тура не превышала допустимой для используемого класса изоляции.

В зависимости от способа включения различают обмот­ки напряжения и обмотки тока. В первом случае напряже­ние, приложенное к обмотке, постоянно по своему действу­ющему значению, во втором - сопротивление обмотки электромагнита намного меньше сопротивления остальной части цепи, которым и определяется неизменное значение тока.

Расчет обмотки электромагнита постоянного тока.

На рисунке 72 показаны магнитопровод и катушка электро­магнита. Обмотка 1 катушки выполняется изолированным проводом, который наматывается на каркас 2.

Катушки могут быть и бескаркасными. В этом случае витки обмотки скрепляются ленточной или листовой изоляцией  либо  заливочным компаундом.

Для расчета обмотки напряжения должны быть заданы напряжение U и МДС. Сечение обмоточного провода q находим, исходя из потребной МДС:

откуда                                           

где – удельное сопротивление; 

– сред­няя длина витка (рисунок 72);  

R – сопротивление обмотки, равное

При неизменной средней длине витка и заданном  МДС определяется произведением .

Если при неизменном напряжении и средней дли­не витка требуется увеличить МДС, то необходимо взять провод большего сечения. При этом обмотка будет иметь меньшее число вит­ков. Ток в обмотке возрас­тет, так как сопротивление ее уменьшится за счет уменьшения числа витков и увели­чения сечения провода.

По найденному сечению с помощью таблиц сортаментов находится ближайший стан­дартный диаметр провода.

Рисунок 72 – К расчету обмотки электромагнита

Мощность, выделяющаяся в обмотке в виде тепла, определяется следующим образом:  

Число витков обмотки при заданном сечении катушки определяется коэффициентом заполнения по меди

где – площадь, зани­маемая медью обмотки;

– сечение обмотки по меди.

Число  витков

.

Тогда  мощность, потребляемая обмоткой, определится выражением

.

Для расчета обмотки тока исходными параметрами яв­ляются МДС и ток цепи . Число витков обмотки нахо­дится из выражения    . Сечение провода можно выбрать исходя из рекоменду­емой плотности тока, равной 2…4 А/мм2 для продолжитель­ного, 5…12 А/мм2 для повторно-кратковременного, 13…30 А/мм2 для кратковременного режимов работы. Эти значения можно увеличить примерно в 2 раза, если срок службы обмотки и электромагнита не превышает 500 ч. Площадь окна, занимаемого рядовой обмоткой, определяется числом витков и диаметром провода d

  • .

Зная , можно определить среднюю длину витка, сопротивление обмотки и потери в ней. После этого может  быть проведена оценка нагрева обмотки.

Порядок выполнения работы:

  1. Выполнить расчет по данным задания.

  2. Составить отчет.

  3. Ответить на контрольные вопросы.

Ход работы:

Внимательно изучить методику расчета обмотки электромагнита постоянного тока. Произвести расчет по выданным исходным данным.

Задание.

Выполнить расчет обмотки, если МДС катушки составляет 3,573·103 А∙В; ток, потребляемый нагретой катушкой равен 0,117 А.

Контрольные вопросы:

  1. Чем определяется МДС катушки постоянного тока?

  2. От чего зависит число витков обмотки постоянного тока?

  3. Что такое сила тяги электромагнита?

Лабораторная работа №11

Тема: «Исследование контактора постоянного тока».

Цель: Сформировать умения различать контакторы постоянного и переменного тока и экспериментально определять характеристики контакторов постоянного тока.

По окончании выполнения лабораторной работы студент должен

знать:

  • назначение, устройство, область применения, принцип работы контактора постоянного тока;

  • безопасные правила эксплуатации;

уметь:

  • отличать контакторы переменного тока от контакторов постоянного тока;

  • экспериментально определять характеристики контакторов постоянного тока.

Основные теоретические положения:

Контактор – это коммутационный аппарат, предназначенный для частых включений и отключений электрических цепей при нормальных режимах работы. Контакторы постоянного тока коммутируют цепь постоянного тока и управляется постоянным током.

Исследуемые контакторы типа КВМ-521 предназначены для дистанционного включения соленоидов приводов выключателей высокого напряжения и выпускаются двухполюсными на токи до 50 А, напряжение 220 В. Собственное время срабатывания – около 0,1 с, а отпускания (возврата) – около 0,05 с. Частота срабатывания достигает 600 включений и отключений в час. Конструкция контактора типа КВМ-521 аналогична конструкции контактора типа КПВ-600, устройство которого показано на рисунке 73.

Все узлы и детали крепятся на основной скобе 6, имеющей Z-образную форму. Скоба является также магнитопроводом электромагнитного контактора. На нижнем конце скобы с помощью болта укреплен сердечник 20 с полюсным наконечником 19. На сердечнике находится намагничивающая катушка 21. На верхнем конце скобы установлено пластмассовое основание 5 с закрепленными на нем дугогасительной катушкой 3, дугогасительным рогом 2 неподвижного контакта, неподвижным контактом 1, дугогасительными щеками 15 и дугогасительной камерой 22. Последняя удерживается на выступе дугогасительного рога неподвижного контакта лишь собственным весом и может быть легко снята без отвинчивания каких-либо деталей.

Скоба 6 имеет прямоугольную прорезь, в которую вставляются якорь 17 Г-образной формы. Якорь несет на себе подвижный контакт 7, снабженный контактной пружиной 12. Подвижный контакт может свободно поворачиваться на призме 8, благодаря чему обеспечивается возможность перекатывания контактной поверхности подвижного контакта по контактной поверхности неподвижного контакта при включении и отключении контактора. Контактная пружина 12 создает в контакте необходимое нажатие и позволяет осуществить провал контактов. Дугогасительным рогом 11 подвижного контакта служит пластина, закрепленная на Z-образной скобе. Подвижный контакт соединяется с выводной шинкой 9 гибкой связью 10. Вводом является шинка 4.

Рисунок 73 – Контактор постоянного тока типа КПВ-600

Электрическая дуга 14, возникающая при отключении между подвижным и неподвижным контактами, загоняется электродинамической силой в узкую щель дугогасительной камеры 22. Катушка 3 магнитного дутья создает магнитный поток, который по сердечнику и дугогасительным щекам 15 подводится в дуговой промежуток, что приводит к возрастанию силы F.

Возврат якоря в исходное положение после отключения контактора происходит под воздействием возвратной пружины 13. С целью повышения механической износоустойчивости вращение якоря 17 выполнено на встречных призмах 24 и 25. На якоре закреплена пластина 18, в которую упирается призма-вставка 25,закрепленная на Z-образной скобе, и штифт-призма 24. Штифт-призма 24 прижимается к пластине 18 цилиндрической пружиной 16, насаженной на этот штифт. Другим концом пружина 16 упирается в фасонную пластину 23. С помощью пружины 16 устраняется возможность появления зазора между пластиной 18 и вставкой-призмой 25.

Конструктивное выполнение узла вращения, исключающее возможность перемещения якоря вдоль призмы, значительно повышает износоустойчивость данного узла. Этому способствует также и расположение сердечника, а, следовательно, и участка скобы магнитопровода, на который упирается якорь, под углом 150 к горизонтальной поверхности. Расположение магнитной системы под углом 150 к горизонтальной плоскости устранило смещение при отключении контактора в момент удара якоря об упор 26.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]