- •Эконометрика Конспект лекций для студентов Содержание
- •Раздел 1. Основы регрессионного анализа 3
- •Раздел 2. Множественная регрессия 16
- •Раздел 1. Основы регрессионного анализа
- •1.1. Предмет и цель исследований эконометрики. Основные понятия
- •1.1.1. Сущность и история возникновения эконометрики
- •1.1.2. Основные понятия эконометрики
- •1.1.3. Эконометрические модели
- •1.1.4. Парная линейная регрессия
- •1.2. Оценка параметров парной линейной регрессии. Метод наименьших квадратов (мнк).
- •1.2.1. Мнк для парной линейной регрессии
- •1.2.2. Условия Гаусса-Маркова (предпосылки мнк)
- •Теорема Гаусса-Маркова.
- •1.2.3. Коэффициенты корреляции и детерминации
- •1.3. Оценка существенности уравнения регрессии и его параметров. Прогнозирование в линейной регрессии
- •1.3.1. Оценка значимости по критериям Фишера и Стьюдента
- •1.3.2. Прогнозирование в линейной регрессии
- •1.3.3. Ошибки аппроксимации
- •Раздел 2. Множественная регрессия
- •2.1. Отбор факторов и выбор формы уравнения множественной регрессии
- •2.1.1. Требования к отбору факторов
- •2.1.2. Фиктивные переменные
- •2.1.3. Ошибки спецификации
- •2.2. Традиционный метод наименьших квадратов для множественной регрессии. Частная и множественная корреляция
- •2.2.1. Мнк для множественной регрессии
- •2.2.2. Частные уравнения, частная корреляция
- •2.2.3. Коэффициенты множественной корреляции и детерминации
- •2.2.4. Оценка значимости уравнения множественной регрессии
- •2.3. Нелинейная регрессия. Линеаризация нелинейной регрессии
- •2.3.1. Виды нелинейной регрессии
- •2.3.2. Линеаризация
- •2.3.3. Критерий Чоу
- •2.3.4. Метод наименьших квадратов для нелинейных регрессионных моделей
- •2.3.5. Корреляция для нелинейной регрессии. Коэффициенты эластичности
- •2.3.6. Оценка существенности нелинейной регрессии
2.1.2. Фиктивные переменные
До сих пор в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые значения, т.е. качественные переменные должны быть преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными. Преобразование качественных переменных в количественные соответствует первому требованию по отбору факторов для множественной регрессии.
Предположим, что определено уравнение для потребления кофе:
где
- количество потребляемого кофе;
– цена;
фиктивная переменная
Теоретические значения размера потребления кофе для мужчин будут получены из уравнения
Для женщин соответствующие значения получим из уравнения
Сопоставив эти результаты, видим, что различия в уровне потребления мужчин и женщин состоят в различии свободных членов данных уравнений: a – для женщин и a+b – для мужчин.
В рассмотренном примере качественный фактор имел только два альтернативных значения (мужчина и женщина), которым и соответствовали обозначения 1 и 0. Если же число градаций качественного признака-фактора превышает два, то в модель вводится несколько фиктивных переменных, число которых должно быть меньше числа качественных градаций.
Общее правило звучит так: если качественная переменная имеет k альтернативных значений, то при моделировании используются (k-1) фиктивных переменных.
Коэффициенты при фиктивных переменных называются дифференциальными коэффициентами свободного члена.
Мы рассмотрели модели с фиктивными переменными, в которых последние выступают факторами. Может возникнуть необходимость построить модель, в которой бинарный признак играет роль результата. Подобного вида модели применяются, например, при обработке данных социологических опросов. В качестве зависимой переменной y рассматриваются ответы на вопросы, данные в альтернативной форме: «да» или «нет». Поэтому зависимая переменная имеет два значения: 1, когда имеет место ответ «да», и 0 – во всех остальных случаях. Модель такой зависимой переменной имеет вид:
Такая модель называется вероятностной линейной моделью.
2.1.3. Ошибки спецификации
Одним из базовых предположений построения качественной модели является правильная спецификация уравнения регрессии. Правильная спецификация уравнения регрессии означает, что оно в целом верно отражает соотношение между экономическими показателями, участвующими в модели. Это является необходимой предпосылкой дальнейшего качественного оценивания.
Неправильный выбор функциональной формы или набора объясняющих переменных называется ошибками спецификации. Рассмотрим основные типы ошибок спецификации.
Отбрасывание значимой переменной.
Например, y = a + b1·x1 + ε вместо y = a + b1·x1 + b2·x2 + ε .
Исследователь по каким-то причинам (недостаток информации, поверхностное знание о предмете исследования и т.п.) считает, что на переменную y реально воздействует лишь переменная x1. При этом он не рассматривает в качестве объясняющей переменную x2, совершая ошибку отбрасывания существенной переменной. Последствия данной ошибки достаточно серьезны. Оценки, полученные с помощью МНК по такому уравнению являются смещенными и несостоятельными даже при бесконечно большом числе испытаний. Следовательно, возможные интервальные оценки и результаты проверки соответствующих гипотез будут ненадежны.
Добавление незначимой переменной.
В некоторых случаях в уравнение регрессии включают слишком много объясняющих переменных, причем не всегда обоснованно.
Например, y = a + b1·x1 + b2·x2 + ε вместо y = a + b1·x1 + ε .
Исследователь подменяет простую модель более сложной, добавляя при этом не оказывающую реального воздействия на у объясняющую переменную x2. В этом случае совершается ошибка добавления несущественной переменной.
Последствия данной ошибки будут не столь серьезными, как в предыдущем случае. Оценки параметров регрессии остаются для такой модели, как правило, несмещенными и состоятельными. Однако их точность уменьшится, увеличиваю при этом стандартные ошибки, т.е. оценки становятся неэффективными, что отразится на их устойчивости.
Выбор неправильной функциональной формы.
Например, ln y = a + b1·x1 + b2·x2 + ε или y = a + b1·ln x1 + b2·ln x2 + ε вместо y = a + b1·x1 + b2·x2 + ε
Любое эмпирическое уравнение регрессии с теми же переменными, но имеющее другой функциональный вид, приводит к искажению истинной зависимости. Последствия данной ошибки будут весьма серьезными. Обычно такая ошибка приводит либо к получению смещенных оценок, либо к ухудшению статистических свойств оценок коэффициентов регрессии и других показателей качества уравнения.
