Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt_lektsiy_po_ekonometrike_dlya_studentov-vechernikov (1).docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
212.3 Кб
Скачать

2.1.2. Фиктивные переменные

До сих пор в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые значения, т.е. качественные переменные должны быть преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными. Преобразование качественных переменных в количественные соответствует первому требованию по отбору факторов для множественной регрессии.

Предположим, что определено уравнение для потребления кофе:

где - количество потребляемого кофе;

– цена;

фиктивная переменная

Теоретические значения размера потребления кофе для мужчин будут получены из уравнения

Для женщин соответствующие значения получим из уравнения

Сопоставив эти результаты, видим, что различия в уровне потребления мужчин и женщин состоят в различии свободных членов данных уравнений: a – для женщин и a+b – для мужчин.

В рассмотренном примере качественный фактор имел только два альтернативных значения (мужчина и женщина), которым и соответствовали обозначения 1 и 0. Если же число градаций качественного признака-фактора превышает два, то в модель вводится несколько фиктивных переменных, число которых должно быть меньше числа качественных градаций.

Общее правило звучит так: если качественная переменная имеет k альтернативных значений, то при моделировании используются (k-1) фиктивных переменных.

Коэффициенты при фиктивных переменных называются дифференциальными коэффициентами свободного члена.

Мы рассмотрели модели с фиктивными переменными, в которых последние выступают факторами. Может возникнуть необходимость построить модель, в которой бинарный признак играет роль результата. Подобного вида модели применяются, например, при обработке данных социологических опросов. В качестве зависимой переменной y рассматриваются ответы на вопросы, данные в альтернативной форме: «да» или «нет». Поэтому зависимая переменная имеет два значения: 1, когда имеет место ответ «да», и 0 – во всех остальных случаях. Модель такой зависимой переменной имеет вид:

Такая модель называется вероятностной линейной моделью.

2.1.3. Ошибки спецификации

Одним из базовых предположений построения качественной модели является правильная спецификация уравнения регрессии. Правильная спецификация уравнения регрессии означает, что оно в целом верно отражает соотношение между экономическими показателями, участвующими в модели. Это является необходимой предпосылкой дальнейшего качественного оценивания.

Неправильный выбор функциональной формы или набора объясняющих переменных называется ошибками спецификации. Рассмотрим основные типы ошибок спецификации.

  1. Отбрасывание значимой переменной.

Например, y = a + b1·x1 + ε вместо y = a + b1·x1 + b2·x2 + ε .

Исследователь по каким-то причинам (недостаток информации, поверхностное знание о предмете исследования и т.п.) считает, что на переменную y реально воздействует лишь переменная x1. При этом он не рассматривает в качестве объясняющей переменную x2, совершая ошибку отбрасывания существенной переменной. Последствия данной ошибки достаточно серьезны. Оценки, полученные с помощью МНК по такому уравнению являются смещенными и несостоятельными даже при бесконечно большом числе испытаний. Следовательно, возможные интервальные оценки и результаты проверки соответствующих гипотез будут ненадежны.

  1. Добавление незначимой переменной.

В некоторых случаях в уравнение регрессии включают слишком много объясняющих переменных, причем не всегда обоснованно.

Например, y = a + b1·x1 + b2·x2 + ε вместо y = a + b1·x1 + ε .

Исследователь подменяет простую модель более сложной, добавляя при этом не оказывающую реального воздействия на у объясняющую переменную x2. В этом случае совершается ошибка добавления несущественной переменной.

Последствия данной ошибки будут не столь серьезными, как в предыдущем случае. Оценки параметров регрессии остаются для такой модели, как правило, несмещенными и состоятельными. Однако их точность уменьшится, увеличиваю при этом стандартные ошибки, т.е. оценки становятся неэффективными, что отразится на их устойчивости.

  1. Выбор неправильной функциональной формы.

Например, ln y = a + b1·x1 + b2·x2 + ε или y = a + b1·ln x1 + b2·ln x2 + ε вместо y = a + b1·x1 + b2·x2 + ε

Любое эмпирическое уравнение регрессии с теми же переменными, но имеющее другой функциональный вид, приводит к искажению истинной зависимости. Последствия данной ошибки будут весьма серьезными. Обычно такая ошибка приводит либо к получению смещенных оценок, либо к ухудшению статистических свойств оценок коэффициентов регрессии и других показателей качества уравнения.