- •Эконометрика Конспект лекций для студентов Содержание
- •Раздел 1. Основы регрессионного анализа 3
- •Раздел 2. Множественная регрессия 16
- •Раздел 1. Основы регрессионного анализа
- •1.1. Предмет и цель исследований эконометрики. Основные понятия
- •1.1.1. Сущность и история возникновения эконометрики
- •1.1.2. Основные понятия эконометрики
- •1.1.3. Эконометрические модели
- •1.1.4. Парная линейная регрессия
- •1.2. Оценка параметров парной линейной регрессии. Метод наименьших квадратов (мнк).
- •1.2.1. Мнк для парной линейной регрессии
- •1.2.2. Условия Гаусса-Маркова (предпосылки мнк)
- •Теорема Гаусса-Маркова.
- •1.2.3. Коэффициенты корреляции и детерминации
- •1.3. Оценка существенности уравнения регрессии и его параметров. Прогнозирование в линейной регрессии
- •1.3.1. Оценка значимости по критериям Фишера и Стьюдента
- •1.3.2. Прогнозирование в линейной регрессии
- •1.3.3. Ошибки аппроксимации
- •Раздел 2. Множественная регрессия
- •2.1. Отбор факторов и выбор формы уравнения множественной регрессии
- •2.1.1. Требования к отбору факторов
- •2.1.2. Фиктивные переменные
- •2.1.3. Ошибки спецификации
- •2.2. Традиционный метод наименьших квадратов для множественной регрессии. Частная и множественная корреляция
- •2.2.1. Мнк для множественной регрессии
- •2.2.2. Частные уравнения, частная корреляция
- •2.2.3. Коэффициенты множественной корреляции и детерминации
- •2.2.4. Оценка значимости уравнения множественной регрессии
- •2.3. Нелинейная регрессия. Линеаризация нелинейной регрессии
- •2.3.1. Виды нелинейной регрессии
- •2.3.2. Линеаризация
- •2.3.3. Критерий Чоу
- •2.3.4. Метод наименьших квадратов для нелинейных регрессионных моделей
- •2.3.5. Корреляция для нелинейной регрессии. Коэффициенты эластичности
- •2.3.6. Оценка существенности нелинейной регрессии
2.3.6. Оценка существенности нелинейной регрессии
Если нелинейное по факторным переменным уравнение регрессии с помощью метода замен можно свести к парному линейному уравнению регрессии, то на это уравнение будут распространяться все методы проверки гипотез для парной линейной зависимости.
Проверка гипотезы о значимости нелинейной регрессионной модели в целом осуществляется через F-критерий. Выдвигается основная гипотеза Но о незначимости коэффициента детерминации для нелинейных форм связи, т.е. о незначимости полученного уравнения регрессии:
Но :R2= 0.
Альтернативной является обратная гипотеза Н1 о значимости построенного уравнения регрессии:
Н1 :R2 ≠ 0.
Наблюдаемое значение F-критерия вычисляется по формуле
Fнабл = R2(п - l)
(1-R2)(l-1) ,
где п - объем выборочной совокупности; l - число оцениваемых параметров по выборочной совокупности.
Критическое значение рассматриваемого критерия Fкрит вычисляется по таблице распределения Фишера в зависимости от уровня значимости α и числа степеней свободы k1 = l-1 и k2 = п-l. Если наблюдаемое значение F-критерия больше критического Fнабл > Fкрит , то основная гипотеза отклоняется, следовательно уравнение нелинейной регрессии является значимым. Если наблюдаемое значение F-критерия меньше критического (Fнабл < Fкрит), то основная гипотеза принимается, и уравнение нелинейной регрессии признается незначимым.
Если существует возможность выбора между линейной и нелинейной регрессионными моделями при изучении конкретной зависимости между переменными, то предпочтение всегда отдается более простой линейной форме связи. Проверить предположение о вероятной линейной зависимости между изучаемыми переменными можно с помощью линейного коэффициента детерминации r2 и индекса детерминации для нелинейных форм связи R2.
Выдвигается основная гипотеза Но о линейной зависимости между переменными. Альтернативной является гипотеза о их нелинейной связи. Проверка этих гипотез осуществляется с помощью t-критерия Стьюдента. Наблюдаемое значение t-критерия
где
- величина ошибки разности (R2
- r2),
вычисляемая по формуле
Критическое значение рассматриваемого критерия tкрит определяется по таблице распределения Стьюдента в зависимости от уровня значимости α и числа степеней свободы (п – l – 1), где l - число оцениваемых параметров βi в регрессионной модели. Если наблюдаемое значение t-критерия больше критического (tнабл > tкрит ), то основная гипотеза отклоняется и между изучаемыми переменными существует нелинейная взаимосвязь. Если наблюдаемое значение t-критерия меньше критического (tнабл < tкрит), то зависимость между переменными может быть аппроксимирована линейным регрессионным уравнением.
