- •Эконометрика Конспект лекций для студентов Содержание
- •Раздел 1. Основы регрессионного анализа 3
- •Раздел 2. Множественная регрессия 16
- •Раздел 1. Основы регрессионного анализа
- •1.1. Предмет и цель исследований эконометрики. Основные понятия
- •1.1.1. Сущность и история возникновения эконометрики
- •1.1.2. Основные понятия эконометрики
- •1.1.3. Эконометрические модели
- •1.1.4. Парная линейная регрессия
- •1.2. Оценка параметров парной линейной регрессии. Метод наименьших квадратов (мнк).
- •1.2.1. Мнк для парной линейной регрессии
- •1.2.2. Условия Гаусса-Маркова (предпосылки мнк)
- •Теорема Гаусса-Маркова.
- •1.2.3. Коэффициенты корреляции и детерминации
- •1.3. Оценка существенности уравнения регрессии и его параметров. Прогнозирование в линейной регрессии
- •1.3.1. Оценка значимости по критериям Фишера и Стьюдента
- •1.3.2. Прогнозирование в линейной регрессии
- •1.3.3. Ошибки аппроксимации
- •Раздел 2. Множественная регрессия
- •2.1. Отбор факторов и выбор формы уравнения множественной регрессии
- •2.1.1. Требования к отбору факторов
- •2.1.2. Фиктивные переменные
- •2.1.3. Ошибки спецификации
- •2.2. Традиционный метод наименьших квадратов для множественной регрессии. Частная и множественная корреляция
- •2.2.1. Мнк для множественной регрессии
- •2.2.2. Частные уравнения, частная корреляция
- •2.2.3. Коэффициенты множественной корреляции и детерминации
- •2.2.4. Оценка значимости уравнения множественной регрессии
- •2.3. Нелинейная регрессия. Линеаризация нелинейной регрессии
- •2.3.1. Виды нелинейной регрессии
- •2.3.2. Линеаризация
- •2.3.3. Критерий Чоу
- •2.3.4. Метод наименьших квадратов для нелинейных регрессионных моделей
- •2.3.5. Корреляция для нелинейной регрессии. Коэффициенты эластичности
- •2.3.6. Оценка существенности нелинейной регрессии
2.3.5. Корреляция для нелинейной регрессии. Коэффициенты эластичности
Качество нелинейной регрессионной модели можно определить с помощью нелинейного показателя корреляции, который называется индексом корреляции для нелинейных форм связи R.
R можно вычислить на основе теоремы о разложении сумм квадратов. Сумма квадратов разностей между значениями результативной переменной и ее средним значением по выборке может быть представлена следующим образом:
,
где
- общая сумма квадратов (TSS
– Total Sum
Square);
- сумма квадратов объясненной
регрессии (RSS – Regression
Sum Square);
- сумма квадратов остатков (ESS
– Error Sum
Square).
На основании данной теоремы
Индекс корреляции для нелинейных форм связи изменяется в пределах [0; 1] . Чем ближе его значение к единице, тем сильнее взаимосвязь между изучаемыми переменными.
Если возвести индекс корреляции в квадрат, то полученная величина будет называться индексом детерминации для нелинейных форм связи:
Индекс детерминации для нелинейных форм связи по характеристикам аналогичен обычному множественному коэффициенту детерминации. Индекс R2 показывает, на сколько процентов построенная модель регрессии объясняет разброс значений зависимой переменной относительно среднего значения, т.е. какая доля общей дисперсии результативного признака объясняется вариацией факторных модельных признаков. Индекс детерминации можно назвать количественной характеристикой объясненной построенным уравнением регрессии дисперсии результативного признака. Чем больше значение данного показателя, тем лучше уравнение регрессии описывает выявленную взаимосвязь.
Кроме рассмотренных показателей, для изучения зависимости между результативной переменной и факторными признаками используются различные коэффициенты эластичности, которые позволяют оценить тесноту связи между переменными х и у.
Общий коэффициент эластичности показывает, на сколько процентов изменится результативный показатель у при изменении величины факторного признака на 1%. Формула расчета общего коэффициента эластичности имеет вид
где
- первая производная результативной
переменной по факторному признаку.
Средний коэффициент эластичности вычисляется для среднего значения факторного признака по приведенной выше формуле:
где
- значение функции при среднем значении
факторного признака.
Средний коэффициент эластичности характеризует процентное изменение результативного признака у относительно своего среднего значения при изменении факторного признака на 1% относительного . Такие коэффициенты рассчитываются по индивидуальным формулам для каждой разновидности функции.
Например,
для показательной функции вида
средний коэффициент эластичности
определяется как:
Основное
достоинство степенной функции вида
заключается в том, что средний коэффициент
эластичности равен коэффициенту
регрессии:
Помимо средних коэффициентов эластичности могут быть также рассчитаны точечные коэффициенты эластичности. Общая формула их расчета
т.е. эластичность зависит от конкретного заданного значения факторного признака х1.
Точечный коэффициент эластичности характеризует процентное изменение результативной переменной у относительно уровня функции у(х1) при изменении факторного признака на 1% относительно заданного уровня х1.
Например,
для параболической функции
точечный коэффициент эластичности
находится следующим образом:
Знаменателем данного показателя является значение параболической функции в точке x1.
