Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt_lektsiy_po_ekonometrike_dlya_studentov-vechernikov (1).docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
212.3 Кб
Скачать

2.3.3. Критерий Чоу

Одним из нетрадиционных методов линеаризации нелинейных регрессионных моделей является разбиение всего множества наблюдений на несколько частей, каждую из которых можно аппроксимировать линейной зависимостью. Может оказаться так, что линейные регрессии для подвыборок окажутся более эффективными, чем общая нелинейная модель регрессии. Проверка такого утверждения осуществляется с помощью теста или критерия Чоу.

Пусть общая выборка имеет объем n. Через S обозначим сумму квадратов отклонений для общей нелинейной регрессии. Разобьем общую выборку на две подвыборки объемами n1 и n2 соответственно (n1 + n2 = n) и построим для каждой из подвыборок частные линейные уравнения регрессии. Через S1 и S2 обозначим суммы квадратов отклонений для каждой из подвыборок.

Для определения значимости частных регрессионных моделей используется критерий Фишера. В этом случае выдвигается основная гипотеза о том, что качество общей регрессионной модели лучше качества частных регрессионных моделей, или подвыборок. Альтернативная гипотеза утверждает, что регрессионный анализ отдельных самостоятельных частей выборки дает результат лучше, чем регрессионный анализ выборки в целом. Наблюдаемое значение F-критерия определяется по формуле

где S - S1 - S2 - величина, характеризующая улучшение качества модели регрессии после разделения ее на подвыборки; m - количество факторных переменных; п - объем общей выборочной совокупности.

Критическое значение F-критерия определяется по таблице распределения Фишера в зависимости от уровня значимости α и двух степеней свободы: k1 = m + 1 и k2 = п - - 2. Если наблюдаемое значение F-критерия больше критического (F > Fтабл), то основная гипотеза отклоняется, и качество частных регрессионных моделей превосходит качество общей модели регрессии. Если наблюдаемое значение F- критерия меньше критического (F < Fтабл), то основная гипотеза принимается, и аппроксимировать отдельные подвыборки линейной зависимостью не имеет смысла.

2.3.4. Метод наименьших квадратов для нелинейных регрессионных моделей

Метод наименьших квадратов можно применять к нелинейным регрессионным моделям только в том случае, если возможна их линеаризация, т.е. они нелинейны по факторным переменным или нелинейны по параметрам, но внутренне линейны.

Рассмотрим применение МНК для определения неизвестных параметров уравнения параболической зависимости следующего вида:

yi = β0 + β1xi + β2x2i + εi

Данный полином второго порядка (или второй степени) является нелинейным по факторным переменным xi . Для нахождения неизвестных параметров уравнения регрессии β0 , β1 , β2 необходимо минимизировать с помощью МНК функцию Q:

n n

Q = Σ (yi - yx i )2= Σ (yi - β0 - β1xi - β2x2i )2 min

i=1 i=1

Процесс минимизации функции сводится к вычислению частных производных этой функции по каждому из оцениваемых параметров. Составим систему уравнений для данной функции Q, не пользуясь при этом методом замен:

дQ = -2 Σ (yi - β0 - β1xi - β2x2i ) = 0

дβ0

дQ = -2 Σ (yi - β0 - β1xi - β2x2i ) xi = 0

дβ1

дQ = -2 Σ (yi - β0 - β1xi - β2x2i ) x2i = 0

дβ2

После элементарных преобразований данной системы уравнений получим

0 + β1 Σ xi + β2 Σ x2i = Σ yi

β0 Σ xi + β1 Σ x2i + β2 Σ x3i = Σ xi yi

β0 Σ x2i + β1 Σ x3i + β2 Σ x4i = Σ x2i yi

Данная система является системой нормальных уравнений относительно параметров β0, β1 , β2 для параболической зависимости yi = β0 + β1xi + β2x2i + εi . Эта система является квадратной, т.е. количество уравнений равняется количеству неизвестных переменных. Коэффициенты β0 , β1 , β2 можно найти с помощью метода Гаусса, если свести систему нормальных уравнений к линейному виду с помощью метода замен.

В общем случае полинома п-й степени

yi = β0 + β1xi + β2x2i + … +βnxni + εi .

Для нахождения неизвестных коэффициентов уравнения регрессии с помощью МНК необходимо минимизировать функцию Q следующего вида:

n n

Q = Σ (yi - yx i )2= Σ (yi - β0 - β1xi - β2x2i - … - βnxni)2 min

i=1 i=1

Тогда систему нормальных уравнений можно записать таким образом:

Σ yi0 n + β1 Σ xi + β2 Σ x2i + … + βn Σ xni

Σ yi xi = β0 Σ xi + β1 Σ x2i + β2 Σ x3i + … + βn Σ xn+1i

………………………………………………………………

Σ yi xn-1i = β0 Σ xn-1i + β1 Σ xni + β2 Σ xn+1i + … + βn Σ x2n-1i

Σ yi xni = β0 Σ xni + β1 Σ xn+1i + β2 Σ xn+2i + … + βn Σ x2ni

Решением данной системы будут являться оценки коэффициентов регрессионной зависимости, выраженной полиномом п-го порядка.

Метод Гаусса применяется в большинстве случаев для решения систем линейных уравнений, когда число неизвестных параметров не совпадает с количеством уравнений. Однако его используют и для решения квадратных систем линейных уравнений.

Основная идея решения системы линейных уравнений методом Гаусса заключается в том, что исходную систему из т линейных уравнений с п неизвестными переменными необходимо преобразовать к треугольному виду. Для этого в одном из уравнений системы оставляют все неизвестные переменные. В другом сокращают одну из неизвестных переменных для того, чтобы их число стало (п - 1). В следующем уравнении убирают две неизвестные переменные, чтобы их число уже было (п - 2). В конце данного процесса система примет треугольный вид: первое уравнение содержит все, а последнее - только (п - т) неизвестных, которые называются базисными. Остальные переменные называются свободными. Дальнейшее решение сводится к выражению свободных неизвестных переменных через базисные и получению общего решения системы линейных уравнений. Для осуществления базисного решения системы линейных уравнений свободные переменные приравнивают к нулю.