- •Эконометрика Конспект лекций для студентов Содержание
- •Раздел 1. Основы регрессионного анализа 3
- •Раздел 2. Множественная регрессия 16
- •Раздел 1. Основы регрессионного анализа
- •1.1. Предмет и цель исследований эконометрики. Основные понятия
- •1.1.1. Сущность и история возникновения эконометрики
- •1.1.2. Основные понятия эконометрики
- •1.1.3. Эконометрические модели
- •1.1.4. Парная линейная регрессия
- •1.2. Оценка параметров парной линейной регрессии. Метод наименьших квадратов (мнк).
- •1.2.1. Мнк для парной линейной регрессии
- •1.2.2. Условия Гаусса-Маркова (предпосылки мнк)
- •Теорема Гаусса-Маркова.
- •1.2.3. Коэффициенты корреляции и детерминации
- •1.3. Оценка существенности уравнения регрессии и его параметров. Прогнозирование в линейной регрессии
- •1.3.1. Оценка значимости по критериям Фишера и Стьюдента
- •1.3.2. Прогнозирование в линейной регрессии
- •1.3.3. Ошибки аппроксимации
- •Раздел 2. Множественная регрессия
- •2.1. Отбор факторов и выбор формы уравнения множественной регрессии
- •2.1.1. Требования к отбору факторов
- •2.1.2. Фиктивные переменные
- •2.1.3. Ошибки спецификации
- •2.2. Традиционный метод наименьших квадратов для множественной регрессии. Частная и множественная корреляция
- •2.2.1. Мнк для множественной регрессии
- •2.2.2. Частные уравнения, частная корреляция
- •2.2.3. Коэффициенты множественной корреляции и детерминации
- •2.2.4. Оценка значимости уравнения множественной регрессии
- •2.3. Нелинейная регрессия. Линеаризация нелинейной регрессии
- •2.3.1. Виды нелинейной регрессии
- •2.3.2. Линеаризация
- •2.3.3. Критерий Чоу
- •2.3.4. Метод наименьших квадратов для нелинейных регрессионных моделей
- •2.3.5. Корреляция для нелинейной регрессии. Коэффициенты эластичности
- •2.3.6. Оценка существенности нелинейной регрессии
2.3. Нелинейная регрессия. Линеаризация нелинейной регрессии
2.3.1. Виды нелинейной регрессии
Во многих случаях при проведении регрессионного анализа применение линейной модели к изучаемым данным может оказаться неэффективным. В этом случае для исследования зависимости между результативной и факторными переменными применяют нелинейные функции.
Различают два основных класса нелинейных моделей:
1) нелинейные модели относительно факторных переменных, но линейные по оцениваемым параметрам;
2) нелинейные модели по оцениваемым параметрам.
Рассмотрим подробнее первый класс нелинейных моделей. К таким моделям относятся полиномиальные функции различных порядков (начиная со второго) и гиперболическая функция.
Общий вид полиномиальной функции п-го порядка или п-й степени можно представить в виде следующей формулы:
yi = β0 + β1xi + β2x2i + … +βnxni + εi
Наиболее часто из полиномиальных функций используется полином второго порядка, или параболическая функция:
yi = β0 + β1xi + β2x2i + εi
Регрессионные модели, нелинейные по переменным, отличаются тем, что зависимая переменная yi линейно связана с оцениваемыми параметрами β0 , … , βn.
Полиномы высоких степеней (более четвертой) использовать при изучении социально-экономических связей между переменными не рекомендуется. Это ограничение основано на том, что такие полиномы имеют больше изгибов и отразить реальную зависимость результативного признака от факторных переменных практически не способны.
Гиперболическая функция вида
yi = β0 + β1 / xi + εi
также отражает линейную связь между зависимой переменной yi и параметрами β0 и β1, но является нелинейной по факторной переменной xi . Данная гиперболическая функция - равносторонняя.
2.3.2. Линеаризация
Для того, чтобы оценить неизвестные параметры β0 , … , βn нелинейной регрессионной модели, необходимо привести ее к линейному виду. Суть линеаризации нелинейных по независимым переменным регрессионных моделей заключается в замене нелинейных факторных переменных на линейные. В общем случае полиномиальной регрессии процесс замены нелинейных переменных функции п-го порядка выглядит следующим образом: x = с1, ; х2 = c2 ; xЗ = с3; ... ; xп = cп.
Тогда уравнение множественной нелинейной регрессии можно записать в виде линейного множественного регрессионного уравнения
yi = β0 + β1xi + β2x2i + … +βnxni + εi =>
=> yi = β0 + β1c1i + β2c2i + … +βncni + εi
Гиперболическую функцию также можно привести к линейному виду с помощью замены нелинейной факторной переменной на линейную. Пусть 1/х = с . Тогда исходное уравнение гиперболической функции можно записать в преобразованном виде:
yi = β0 + β1 / xi + εi => yi = β0 + β1сi + εi
Таким образом, и полиномиальную функцию любой степени, и гиперболоид можно свести к модели линейной регрессии, что позволяет применять к преобразованной модели традиционные методы нахождения неизвестных параметров уравнения регрессии (например, классический МНК) и стандартные методы проверки различных гипотез.
Ко второму классу нелинейных моделей относятся регрессионные модели, в которых результативная переменная yi нелинейно связана с параметрами уравнения β0 ,…, βn . К такому типу регрессионных моделей относятся:
1) степенная функция
2) показательная функция
3) логарифмическая парабола
4) экспоненциальная функция
5) обратная функция
и другие.
Нелинейные по параметрам регрессионные модели в свою очередь делятся на модели подлежащие линеаризации (внутренне линейные функции) и неподлежащие линеаризации (внутренне нелинейные функции). Примером моделей, которые можно свести к линейной форме, является показательная функция вида yi = β0 · β1xi · εi , где случайная ошибка εi мультипликативно связана с факторным признаком xi . Данная модель нелинейна по параметру β1. Для ее линеаризации вначале осуществим процесс логарифмирования:
ln yi = ln β0 + xi ·ln β1 + ln εi
Затем воспользуемся методом замен. Пусть ln yi = Yi; ln β0 = А; ln β1 =В; ln εi =Еi.
Тогда преобразованная показательная функция имеет следующий вид:
Yi = А + В xi + Еi .
Следовательно, показательная функция yi = β0 · β1xi · εi является внутренне линейной, и оценки ее параметров могут быть найдены с помощью традиционного метода наименьших квадратов.
Если же взять показательную функцию, включающую случайную ошибку εi аддитивно, т.е. yi = β0 · β1xi+ εi , то данную модель уже невозможно привести к линейному виду с помощью логарифмирования. Она является внутренне нелинейной.
Пусть задана степенная функция вида yi = β0 · x i β1 · εi . Прологарифмируем обе части уравнения:
ln yi = ln β0 + β1·ln xi + ln εi
Теперь воспользуемся методом замен: ln yi = Yi; ln β0 = А; ln xi =Xi; ln εi = Еi .
Тогда преобразованная степенная функция имеет следующий вид:
Yi = А + β1 Xi + Еi .
Степенная функция также является внутренне линейной и ее оценки можно найти с помощью традиционного метода наименьших квадратов. Но если взять степенную функцию; виде уравнения yi = β0 · x i β1+ εi , где случайная ошибка аддитивно связана с факторной переменной, то модель становится внутренне нелинейной.
