Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конс_лк15.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.84 Mб
Скачать

Лекция 1 Тема: «Общие сведения о релейной защите»

Назначение релейной защиты

В электрической части энергосистем могут возникать по­вреждения и ненормальные режимы работы электрооборудования электростанций (ЭС) и подстанций (ПС) линий электропередачи (ЛЭП) и электроустановок потребителей электроэнергии.

Повреждения вызывают появление значительных аварий­ных токов и сопровождаются глубоким понижением напряжения на шинах ЭС и ПС. Ток повреждения выделяет большое ко­личество теплоты, которое вызывает сильное разрушение в месте повреждения (точка К) и опасное нагревание проводов неповрежденных ЛЭП и оборудования, по которым этот ток проходит (рис. 1).

Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы ЭС энергосистемы (ЭЭС).

Ненормальные режимы обычно приводят к отклонению напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости ЭЭС, а повышение напряжения и тока угрожает повреждением обору­дования и ЛЭП.

Для уменьшения разрушений в месте повреждения и обеспечения нормальной работы неповрежденной части ЭЭС необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной части ЭЭС.

Опасные последствия ненормальных режимов также можно предотвратить, если своевременно принять меры к их устранению (например, снизить ток или напряжение при их увеличении), а при необходимости отключить оборудование, оказавшееся в недопустимом для него режиме.

Выявление и отключение повреждений следует производить очень быстро - в большинстве случаев в течение сотых и десятых долей секунды, что может быть обеспечено только средствами автоматики. Б связи с этим возникла необходимость в созданий и применении автоматических устройств, защищающих ЭЭС и ее элементы от опасных последствий повреждений и ненормальных режимов. Первоначально в качестве подобной автоматики (защиты) применялись плавкие предохранители. Впоследствии были созданы защитные устройства, выполняемые при помощи электрических автоматов-реле. Такой способ защиты получил название релейной защиты.

Релейная защита (РЗ) осуществляет непрерывный контроль за состоянием всех элементов ЭЭС и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить поврежденный участок (на­пример, на рис. 1 трансформатор ТС) и отключить его от ЭЭС, воздействуя на специальные силовые выключатели Q, предназначенные для размыкания токов повреждения.

Рис. 1. Схема участка энергосистемы

При возникновении ненормальных режимов РЗ также должна выявлять их и в зависимости от характера нарушения либо отключать оборудование, если возникла опасность его повреж­дения, либо производить автоматические операции, необходимые для восстановления нормального режима, либо осуществлять сигнализацию оперативному персоналу, который должен принимать меры к ликвидации ненормальности.

Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем. Она тесно связана с другими видами электрической автоматики, предназначенной для предотвращения развития аварийных нарушений и быстрого восстановления нормального режима работы ЭЭС и электроснабжения потребителей: автоматического повторного включения (АПВ), автоматического включения резервных источников питания (АВР), авто­матической частотной разгрузки (АЧР) и др.

Основные этапы развития релейной защиты

Релейная защита является обязательной частью всех электроэнергетических установок, объектов и систем напряжением 1 кВ и выше. Она имеет особо важное и самостоятельное функциональное назначение, представляет собой сложную информационную систему, состоящую из комплекса взаимосвязанных электромагнитных, электронных и микроэлектронных устройств, а также источников питания.

Защита первых электрических установок от коротких замыканий осуществлялась с конца позапрошлого столетия плавкими предохранителями. В начале ХХ века появились сначала реле тока, а потом и реле напряжения. С 1910 года начинают использоваться токовые защиты, дополненные реле направления мощности. Реле сопротивления, как составная часть дистанционной защиты, стали выпускаться в начале 20-х годов. Для реле тока и напряжения использовались электромагнитные механизмы, реле направления мощности и сопротивления выполнялись на индукционном принципе.

К началу 30-х годов относится появление высокочастотных защит линий электропередач с электронными лампами. С конца 40-х годов наметилась тенденция конструирования реле с использованием полупроводниковых диодов и транзисторов. Уже в 60-х годах такие реле стала получать все большее распространение и в настоящее время, например, вместо индукционных реле направления мощности и со противления выпускаются полупроводниковые.

В 80-х годах стали появляться отдельные реле и комплекты защит, выполненные с применением элементов микроэлектроники (аналоговых и цифровых микросхем). Дальнейшая тенденция развития техники релейной защиты связана с использованием микропроцессорных комплексов. Такие комплексы осуществляют как функции релейной защиты, так и ряд дополнительных и сервисных функций (автоматическое повторное включение, определение места Повреждения, фиксация Параметров аварийного режима и т.п.) с отображением на встроенном дисплее.

С развитием техники релейной защиты уменьшались ее габариты и собственное потребление, улучшались ее характеристики, повышались быстродействие, чувствительность и надежность, совершенствовались алгоритмы функционирования. Все это позволяет более уверенно решать основную проблему: четкое разграничение аварийного и нормального режимов.

В 60-х годах на отечественных железных дорогах началось интенсивное внедрение электрической тяги на однофазном переменном токе. Для защиты тяговых сетей в этот период использовались реле тока и индукционные реле сопротивления общепромышленного изготовления. Электромагнитные и, особенно, индукционные реле не могли обеспечить необходимые свойства защиты тяговых сетей переменного тока и уже с конца 60-х годов они стали вытесняться, а вскоре и совсем вытиснились комплектами полупроводниковых защит.

В 90-х годах за рубежом ин России стали появляться опытные партии цифровых защит с использованием микропроцессоров.

Структурная схема релейной защиты

Релейная защита выполняется с помощью реле. Реле — это автоматически действующий аппарат, осуществляющий скачкообразные изменения в управляемых системах при заданном значении воздействующей на него величины. При этом под воздействующей понимается величина, на которую должно реагировать реле (ток, напряжение, температура, поток газовых пузырей и т. д.).

Релейная защита (рис. 2) состоит из одного или нескольких измерительных органов ИО1, И02 логической части или выходного органа ВО. Каждый измерительный орган содержит измерительный элемент (схему) ИСI, ИС2, … и элемент (схему) сравнения СС1, СС2... На входе релейной защиты АК подаются один или несколько сигналов от трансформатора тока ТА и трансформатора напряжения ТV несущих информацию о режимах работы защищаемого объекта. Из мерительные органы анализируют информацию о входных величинах (значениях тока, напряжения, их соотношения или фазового угла между ними и т. д.) и при определенных условиях формируют дискретный сигнал, поступающий на вход логической части. В измерительных органах могут быть использованы реле тока, напряжения, сопротивления и др.

Рис. 2. Структурная схема релейной защиты

В логической части защиты выходные дискретные сигналы от всех измерительных органов анализируются по определенной программе, формируется выдержка времени защиты. Если выполняются заранее заданные условия, то на выходе ЛЧ появляется дискретный сигнал, поступающий на вход выходного органа ВО, в котором сигнал усиливается и поступает на катушку электромагнита отключения ЭО выключателя Q. Информацию о срабатывании релейной защиты в целом в ее отдельных измерительных органов выдает блок сигнализации БС.

Релейная защита является частью комплекса устройств автоматики в системе электроснабжения железных дорог. Вместе с устройствами автоматического повторного включения (АПВ) и автоматического включения резерва (АВР) релейная защита образует так называемую систему противоаварийной автоматики (автоматики управления в аварийных режимах).

Релейная защита, контролирующая состояние только одного объекта и отключающая при аварийных режимах выключатель только данного объекта, называется индивидуальной. Во многих случаях основные свойства защиты (чувствительность, селективность, быстродействие) улучшаются, если индивидуальные устройства взаимосвязаны.

Взаимная связь таких устройств может быть продольной и поперечной. Продольная взаимная связь объединяет защиты АК1 и АК2 на разных концах (на входе и выходе) одного объекта, например, линии (рис. 3, а). Взаимная связь, при которой объединяются защиты АК1 и АК2 разных объектов, присоединенных к общим шинам, называется поперечной рис. 3, б).

До недавнего времени релейная защита и другие устройства автоматики выполнялись только на релейно-контактных элементах. В последние десятилетия широко начали применять электронные устройства. Это повышает надежность защит, уменьшает их размеры, собственное потребление и эксплуатационные расходы, а также позволяет реализовать совершенно новые функциональные зависимости. Применение полупроводниковой электроники дает возможность выполнить релейную защиту вместе с другими устройствами автоматики и телемеханики в виде единой системы, комплекса.

Рис. 3. Взаимные связи релейных защит

Применение микроэлектроники и микропроцессорных систем еще больше повышает эффективность релейной защиты и автоматики, открывает перспективы для подачи функций релейной защиты и автоматики специальными управляющими вычислительным машинам, которые будут управлять устройствами электроснабжения в нормальных и аварийных режимах.

Виды повреждений и ненормальные режимы работы энергосистемы Большинство повреждений в ЭЭС приводит к коротким замыканиям (КЗ) фаз между собой или на землю (рис. 1). В обмотках электрических машин и трансформаторов могут также возникать КЗ между витками одной фазы. Основными причинами повреждений являются: нарушения изоляции токоведущих частей, вызванные ее старением, перенапряжениями, механическими повреждениями; повреждения проводов и опор ЛЭП, вызванные их неудовлетворительным состоянием, гололедом, ураганным ветром, «пляской проводов» и другими причинами; ошибки персонала при операциях (отключение разъединителей под нагрузкой или включение их на ошибочно оставленное заземление и др.).

Рис. 1. Виды повреждений в электрических установках: а, б, в, г - трехфазное, двухфазной, однофазное и двухфазное КЗ на землю; д, е - замыкания одной и двух фаз на землю в сети с изолированной нейтралью

При КЗ в контуре накоротко замкнутой ЭДС Е источника питания (генератора) возникает большой ток . Короткие замыкания подразделяются на трехфазные К(3), двухфазные К(2), однофазные на землю К(1) и двухфазные на землю К(1.1), (рис.1).

Происходящие при КЗ увеличение тока и снижение напря­жения приводят к ряду тяжелых последствий:

а) ток КЗ выделяет в активном сопротивлении цепи R, по которой он проходит в течение времени t, теплоту, опреде­ляемую по закону Джоуля-

Ленца: . В месте повреждения теплота, выделяема током, и пламя электрической дуги производят большие разрушения, размеры которых тем больше, чем больше ток и время t . Проходя по неповрежденному оборудованию, ток КЗ нагревает его выше допустимого предела, что может вызвать повреждение изоляции и токоведущих частей;

б) при протекании больших токов КЗ усиливаются электро­динамические взаимодействия между проводниками, сопро­вождающиеся значительными механическими напряжениями;

в) понижение напряжения при КЗ нарушает работу потребителей: синхронных и асинхронных электродвигателей, освети тельных установок и других электроприемников;

г) снижение напряжения может сопровождаться нарушением устойчивости параллельной работы генераторов, что приводит к распаду энергосистемы и прекращению электроснабжения части или всех потребителей.

Особым видом повреждения являются замыкания на землю одной фазы в сети с изолированной нейтралью или заземленной через большое сопротивление дугогасящего реактора (ДТР) или большое активное сопротивление. На рис. 1, д видно, что замыкание на землю в сети с изолированной нейтралью не вызывает КЗ, так как ЭДС ЕА поврежденной фазы не шунти­руется появившимся соединением с землей. Возникающий при этом в месте повреждения ток замыкается через емкость С проводов неповрежденных фаз (В и С) сети относительно земли и имеет поэтому, как правило, небольшое значение. Междуфазные напряжения при этом виде повреждения остаются неизменными. Благодаря этому однофазное замыкание на землю в сетях с изолированной нейтралью не отражается на работе потребителей и не нарушает синхронной работы генераторов. Однако этот вид повреждения вызывает перенапряжения в сети, что представляет опасность с точки зрения возможности нарушения изоляции относительно земли двух неповрежденных фаз (В и С) и перехода однофазного замыкания на землю в междуфазное КЗ или двойное замыкание на землю.

Ненормальные режимы. Перегрузка оборудования, вызванная сверхтоком, т. е. уве­личением тока сверх номинального значения. Номинальным называется максимальное значение тока, допускаемое для данного оборудования в течение неограниченного времени. Если ток I, проходящий по оборудованию, превышает номинальное значение, то за счет выделяемой им дополнительной теплоты температура токоведущих частей и изоляции через некоторое время превосходит допустимое значение, что приводит к ускоренному старению изоляции и токоведущих частей. Время допустимое для прохождения повышенных токов, зависит от их значения. Причиной сверхтока может быть увеличение нагрузки или появление КЗ за пределами защищаемого элемента (внешнее КЗ). Для предупреждения повреждения оборудования при еперегрузке необходимо принять меры к его разгрузке или отключению в пределах времени .

Повышение напряжения сверх допустимого значения может возникнуть на гидрогенераторах, а также на турбогенераторах большой мощности, работающих по схеме блока, при внезапном отключении их от сети. Для предотвращения повреждения оборудования предусматривается РЗ действующая на гашение поля генератора.

Опасное для изоляции оборудования повышение напряжения может возникнуть также при одностороннем отключении или включении длинных ЛЭП высокого напряжения (ВН) с большой емкостной проводимостью. Ликвидация опасных повышений напряжения в сетях сверхвысокого напряжения осуществляется с помощью специальной автоматики.

Качания возникают при нарушении синхронной работы ге­нераторов электростанций ЭЭС. Качание - очень опасный ненормальный режим, отражающийся на работе всей ЭЭС.

По характеру изменения тока и напряжения ка­чания похожи на КЗ. Большинство устройств РЗ могут приходить в действие при качаниях и отключать защищаемые ими элементы. Такие хаотичные отключения разделяют ЭЭС на изолированные участки с дефицитом или избытком генерируемой мощности, что может привести к частичному или полному нарушению электроснабжения питающихся от ЭЭС потребителей. Поэтому необходимы меры, исключающие хаотичное действие РЗ при возникновении качаний.

Асинхронный режим. К ненормальным режимам относится также работа синхронного генератора без возбуждения например, при отключении автомата гашения поля (АГП). При работе в асинхронном режиме увеличивается частота вращения генератора и возникает пульсация тока статора. Для генераторов некоторых типов длительная работа в асинхронном режиме не допускается, а для других допускается лишь при уменьшенном значении активной мощности. В отдельных случаях потеря возбуждения, не представляя опасности для самого генератора, может послужить причиной резкого снижения напряжения, угрожающего нарушением устойчивости параллельной работы. В этом случае генератор должен быть немедленно отключен от сети.

Основные свойства и требования

Основные требования к РЗ от повреждений и к РЗ, реагирующей на ненормальные режимы, имеют некоторые различия, поэтому они рассматриваются раздельно.

Требования к защите от повреждений. Зашита от повреждений должна удовлетворять четырем основным требованиям: действовать селективно, быстро, обладать необходимом чувствительностью к повреждениям и надежно выполнять свои функции.

Селективность. Селективностью, или избирательностью, РЗ называется ее способность отключать только поврежденный участок сети. Так, при КЗ в точке К1 (рис. 2) РЗ должна отключать поврежденную ЛЭП выключателем Q2, ближайшим к месту повреждения. При таком действии РЗ электроснабжение всех потребителей, кроме питавшихся от поврежденной ЛЭП, сохраняется. В случае КЗ в точке К2 при селективном действии РЗ должна отключаться поврежденная ЛЭП W1, а ЛЭП W2 оставаться в работе. При этом все потребители сохраняют питание. Селективность РЗ является обязательным требованием, отступление от него допускаете; только для обеспечения быстродействия, когда неселективное отключение не влечет за собой опасных последствий.

Рис. 2. Селективное отключение КЗ э сети

Быстрота действия. Отключение КЗ должно производиться с возможно большей быстротой для ограничения размеров разрушения в месте повреждения, обеспечения термической стойкости оборудования, кабельных и воздушных ЛЭП повышения эффективности АПВ ЛЭП и сборных шин, уменьшения влияния снижения напряжения на работу потребителей и сохранения устойчивости параллельной работы генераторов электростанций. Для сохранения устойчивости энергосистем требуется весьма малое время отключения КЗ. На ЛЭП 750-1150 кВ междуфазные КЗ необходимо отключать через 0,06-0,08 с после их возникновения, на ЛЭП 330-500 кВ - за 0,1-0,12 с, на ЛЭП 1 10-22 кВ за 0,15-0,3 с.

Для уменьшения времени отключения КЗ необходимо уско­рять действие как РЗ, так и выключателей. Выключатели 220-750 кВ действуют с с. Наиболее быстродействующие РЗ, применяемые в отечественных энергосистемах, действуют с с.

В распределительных сетях 6-35 кВ, удаленных от основных ЭС, допускается отключение КЗ с временем 1,5-3 с. Однако и в этих сетях следует стремиться к уменьшению времени действия РЗ.

Чувствительность. РЗ должна обладать достаточной чувствительностью при возникновении КЗ в пределах зоны ее действия. Так, например, Р31 (рис. 3) должна отключать по­вреждения на участке АВ (первом - основном), защищаемом Р31, и, кроме того, иметь достаточную чувствительность для действия при КЗ на следующем (втором - резервируемом) участке ВС, защищаемом Р32. Последняя функция РЗ1 называется дальним резервированием. Такое резервирование необходимо для отключения КЗ в том случае, если РЗ второго участка (Р32) или выключатель Q2 не подействуют из-за неисправности. Таким образом, РЗ, предназначенные для дальнего резервирования, должны быть чувствительны и к КЗ в конце следующего участка (ВС, рис. 3).

Таким образом, чувствительность РЗ должна быть достаточной для надежного действия ее при КЗ в конце установленной для нее зоны в минимальном режиме энергосистемы и при замыканиях через переходное сопротивление К.п. Требования к чувствительности РЗ для разных защищаемых объектов приведены в ПУЭ.

Надежность. Требование надежности состоит в том, что РЗ должна безотказно работать при повреждении в пределах установленной для нее зоны и не должна работать неправильно, когда работа ее не предусматривается. Отказ в работе или неправильное действие РЗ приводят к дополнительному на­рушению электропитания потребителей, а иногда к авариям системного значения. Например, при КЗ в точке К1 (рис. 4) и отказе РЗ1 сработает РЗЗ, в результате чего дополнительно отключатся подстанции II и III, а при неправильной работе Р34 в нормальном режиме отключится ЛЭП W4, и потребители подстанций I-IV потеряют питание.

Рис. 3. Зоны действия РЗ

Надежность устройств РЗ обеспечивается простотой их схем, уменьшением в них количества элементов, реле, контактных соединений, простотой и надежностью применяемых конструкций и схем, реле, полупроводниковых элементов, качеством изготовления вспомогательной аппаратуры и монтажных ма­териалов, качеством самого монтажа и контактных соединений, а также периодической проверкой исправности РЗ в процессе эксплуатации.

Рис. 4. Неселективное отключение КЗ в случае отказа РЗ

Требования к РЗ от ненормальных режимов. Эти РЗ также должны обладать селективностью, чувствительностью и надежностью. Быстроты действия от них, как правило, не требуется. Отключение оборудования при ненормальном режиме должно производиться только тогда, когда создается опасность его повреждения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]