Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электронный учебник(послед).doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
3.77 Mб
Скачать

Практическое занятие 13 Скалярное произведение векторов и его приложения. Скалярное произведение векторов

1) .

2) Если , то , -

координатная форма скалярного произведения.

3) ;

4) ;

5) .

Пример 13.1. Даны вершины треугольника ; ; .

Найти косинус угла между сторонами и .

Решение: По формуле: .

.

Ответ: .

Пример 13.2. Дано разложение векторов и по векторам и . Требуется найти:

1) длины диагоналей параллелограмма, построенного на векторах и ;

2) косинус угла между векторами и ;

, , , , .

Решение:1)Одна из диагоналей параллелограмма равна , другая ─ .

,

,

Ответ: ; .

2) Найдем косинус угла между векторами и :

Ответ: .

Решить задачи:

15. Найти скалярное произведение векторов и , если А(2;3;0), B(1;-1;2), C(1;-1;0) и D(1;1;1);

16.Найти скалярное произведение векторов и , если А(2;1;-1), B(1;1;0),C(0;-1;0) и D(2;1;-3);

17. Найдите скалярное и векторное произведение векторов .

18. Даны векторы . Вычислите угол между ними.

19. Найти угол между векторами и , если А(2;1;0), B(0;-1;2), C(0;-1;0) и D(1;-1;1);

20. Векторы и образуют угол = , зная, что | | = 3, | | = 4 вычислить (3 - 2 ) ( + 2 ); Найти модуль вектора = 3 - 2 ; вычислить угол между векторами = – b и = - 2 ; Найти проекцию .

21. Даны векторы = {4; -2; 4}, = {6; -3; 2}. Вычислить а) (2 - 3 ) ( + 2 ),

б) ( ) .

22. Даны три вектора = {1; -3; 4}, = {3; -4; 2} и = {-1; 1; 4}. Вычислить .

23. Даны вершины четырехугольника А(1; -2; 2), В(1; 4; 0), С(-4; 1; 1) и D(-5; -5; 3). Доказать, что его диагонали АС и BD взаимно перпендикулярны.

24. Вычислить какую работу производит сила = {3; -5; 2}, тогда её точка приложения перемещается из начала в конец вектора = {2; -5; -7}

25. Даны вершины треугольника А(-1; -2; 4), В(-4; -2; 0) и С(3; -2; 1). Определить его внутренний угол при вершине B

26.Найти целое значение параметра m, при котором векторы ортогональны.

Практическое занятие 14 Векторное и смешанное произведения векторов, их приложения Векторное произведение векторов

  1. ;

  2. ;

  3. Если , то

или ,

где - единичные векторы на осях ОХ, ОY, OZ.

Свойства и приложения векторного произведения векторов:

  1. ;

2) ;

3) ;

4) ;

5) ;

6) - площадь параллелограмма, построенного на векторах и .

7) - площадь треугольника, построенного на векторах

Пример 14.1. Вычислить площадь треугольника , если

; ; .

Решение: Площадь треугольника вычислим по формуле: .

.

Ответ: .

Пример 14.2. Дано разложение векторов и по векторам и .

Найти площадь параллелограмма, построенного на векторах и .

, , , , .

Решение:

Ответ: .

Решить задачи:

27. Найти векторное произведение векторов и , если А(2;3;0), B(1;-1;2), C(1;-1;0) и D(1;1;1);

28. Найти векторное произведение векторов и , если А(2;-1;1), B(0;-1;2), C(2;-1;0) и D(2;1;-1);

29. Найти площадь треугольника ABC с вершинами в точках А(1;1;-1), B(0;-1;2), C(2;-1;0);

30. Векторы образуют угол = ; зная, что | | = 6, | | = 5, вычислить | |; наибольшая площадь параллелограмма построенного на векторах и ; и синус угла между диагоналями параллелограмма построенного на векторах и .

31. Даны : | | = 3, | | = 26 и | | = 72. Вычислить .

32. Даны точки А (1; 2; 0), В (3; 0; -3) и С (5; 2; 6). Вычислить площадь треугольника АВС.

33. Какому условию должны удовлетворять векторы , что бы векторы и были коллинеарны?

34. Сила = {3; 4; -2} приложена к точке С (2; -1; 2). Определить величину и направляющие косинусы момента этой силы относительно начала координат.

35. Даны вершины треугольника А (1; -1; 2), В (5; -6; 2) и С (1; 3; -1). Вычислить его высоты, опущенной из вершины В на сторону АС.

36. Векторы связанны соотношениями . Доказать коллинеарность векторов и .

37.. Даны векторы = {3; -1; -2} и = {1; 2; -1}. Найти координаты векторного произведения (2 ) (2 .

38. Даны векторы = {2; -3; 1}, = {-3; 1; 2} и = {1; 2; 3}. Вычислить .