Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электронный учебник(послед).doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
3.77 Mб
Скачать

Практическое занятие 9 Решение систем линейных уравнений методом Гаусса

Метод Гаусса решения систем линейных уравнений заключается в приведении системы уравнений к треугольному виду путем элементарных преобразований уравнений системы, к которым относятся:

- перестановка двух уравнений;

- умножение обеих частей одного из уравнений на ненулевое число;

- прибавление к обеим частям одного из уравнений соответствующих частей другого уравнения.

Элементарные преобразования переводят данную систему в эквивалентную ей.

Пример 9.1.. Решить системы линейных уравнений методом Гаусса.

1)

Решение: Решим систему методом Гаусса. Первое уравнение системы оставляем без изменения, для получения второго уравнения умножим первое на 2 и сложим со вторым, а для получения третьего - умножим первое на 6 и сложим с третьим:

Первых два уравнения оставим без изменения, а для получения третьего умножим второе на 7 и сложим с третьим:

Ответ: ; ; .

2)

Ответ: решений нет.

3)

Ответ: Бесчисленное множество решений: .

Решить задачи:

1.111. Решите систему линейных уравнений:

1.112. Решите систему линейных уравнений:

1.113. Решите систему линейных уравнений:

1.114.Решите систему линейных уравнений:

1.115.Решите систему линейных уравнений:

1.116.Решите систему линейных уравнений:

Практическое занятие 10 Решение систем линейных уравнений методом Жордана-Гаусса

Пример 1. Решить систему методом Жордана-Гаусса

Решение:

1-й шаг. По данным системы составим таблицу. Выбираем разрешающий элемент , для удобства вычислений берем . Все элементы первой строки делим на этот разрешающий элемент. Все элементы разрешающего столбца , кроме элемента , обнуляем. Все остальные элементы таблицы вычисляем по правилу прямоугольника.

базис

2

2

-1

1

4

-2

3

2

2

5

1

1

-2

1

1

2

2

-1

1

4

-6

- 1

4

0

-3

-1

-1

-1

0

-3

-10

0

7

1

-2

6

1

-4

0

3

5

0

- 5

0

0

-3

0

0

1

-2

2

1

0

0

3

-1

0

1

0

0


Записываем полученные данные в таблицу. Осуществляем контроль:

Т.к. элементы контрольного столбца, вычисленные по правилу прямоугольника, равны элементам контрольного столбца, вычисленные суммированием элементов по строке, то полученная таблица составлена верно. Выбранному разрешающему элементу соответствовала переменная , следовательно, переменную записываем в базис.

Переходим к следующему шагу.

2-й шаг. Выбираем разрешающий элемент из второй и третьей строчки, для удобства вычислений берем . Все элементы второй строки делим на этот разрешающий элемент. Все элементы разрешающего столбца , кроме элемента , обнуляем. Все остальные элементы таблицы вычисляем по правилу прямоугольника.

Третий столбец в новую таблицу можно переписать без изменений, т.к. в разрешающей стоке в третьем столбце стоит ноль. Записываем полученные данные в таблицу. Осуществляем контроль:

Т.к. элементы контрольного столбца, вычисленные по правилу прямоугольника, равны элементам контрольного столбца, вычисленные суммированием элементов по строке, то полученная таблица составлена верно. Выбранному разрешающему элементу соответствовала переменная , следовательно, переменную записываем в базис.

Переходим к следующему шагу.

3-й шаг. Выбираем разрешающий элемент из третьей строчки, т.к. в этой третьей строке только один элемент отличный от нуля, то в качестве разрешающего элемента выбираем этот элемент . Все элементы третьей строки делим на этот разрешающий элемент. Все элементы разрешающего столбца , кроме элемента , обнуляем. Все остальные элементы таблицы вычисляем по правилу прямоугольника.

Первый, третий и контрольный столбцы в новую таблицу можно переписать без изменений, т.к. в разрешающей строке в первом, третьем и контрольном столбцах стоят нули. Записываем полученные данные в таблицу. Осуществляем контроль:

Т.к. элементы контрольного столбца, вычисленные по правилу прямоугольника, равны элементам контрольного столбца, вычисленные суммированием элементов по строке, то полученная таблица составлена верно. Выбранному разрешающему элементу соответствовала переменная , следовательно, переменную записываем в базис.

Т.к. все строки побывали разрешающими и система приведена к единичному базису, то выписываем ответ:

Ответ: .

Задание 1.117. Решить систему линейных уравнений методом Жордана – Гаусса.

1) 2)

3) 4)

5)