Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 8.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.52 Mб
Скачать

4. Дифференциальные уравнения, приводящиеся к однородным

Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут быть приведены к однородным.

Это уравнения имеют вид .

Если определитель то переменные могут быть разделены подстановкой

где и - решения системы уравнений

Пример. Решить уравнение

Имеем

Находим значение определителя .

Решаем систему уравнений

В исходном уравнении сделаем подстановку: . Получим:

Заменяя переменную при подстановке в выражение, записанное выше, будем иметь:

;

Разделяя переменные получим:

; ;

Переходим к первоначальной функции у и переменной х:

;

;

;

Таким образом, выражение является общим интегралом исходного дифференциального уравнения.

В случае если в исходном уравнении вида определитель то переменные могут быть разделены подстановкой

Пример. Решить уравнение

Получаем

Находим значение определителя

Применяем подстановку Получим

Подставляя это выражение в исходное уравнение будем иметь:

Разделяя переменные получим:

Возвращаясь к первоначальной функции у и переменной х, находим

Таким образом, получили общий интеграл исходного дифференциального уравнения.

5. Линейные дифференциальные уравнения

Определение. Дифференциальное уравнение называется линейным относительно неизвестной функции и ее производной, если оно может быть представлено в виде:

При этом, если правая часть уравнения равна нулю, то такое уравнение называется линейным однородным дифференциальным уравнением. Если правая часть уравнения не равна нулю, то такое уравнение называется линейным неоднородным дифференциальным уравнением. Причём и являются непрерывными функциями на некотором промежутке .

6. Линейные однородные дифференциальные уравнения

Рассмотрим методы нахождения общего решения линейного однородного дифференциального уравнения первого порядка вида

.

Для этого типа дифференциальных уравнений разделение переменных не представляет трудностей:

;

Общее решение имеет вид:

7. Линейные неоднородные дифференциальные уравнения

Для интегрирования линейных неоднородных уравнений применяются в основном два метода: метод Бернулли и метод Лагранжа.

Метод Бернулли. Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций . При этом, очевидно, что . Подставляя полученное выражение в исходное уравнение, находим:

; .

Так как первоначальная функция была представлена в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть выбран произвольно.

Например, функция может быть представлена в виде: и т.п.

Таким образом, одну из составляющих произведение функций можно выбрать так, что выполнялось равенство .

Таким образом, возможно получить функцию u, проинтегрировав полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:

Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю:

Интегрируя, находим функцию v:

; .

Таким образом, получаем вторую составляющую произведения , которое и определяет искомую функцию.

Подставляя полученные значения, находим:

Окончательно получаем формулу:

, - произвольная постоянная.

Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.

Метод Лагранжа. Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом вариации произвольной постоянной.

Рассмотрим дифференциальное уравнение:

Первый шаг данного метода состоит в замене нулем правой части исходного уравнения:

.

Далее находится решение получившегося однородного дифференциального уравнения:

.

Для того чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную некоторой функцией от х.

По правилам дифференцирования произведения функций находим: