Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 6.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.04 Mб
Скачать

2. Полное приращение и полный дифференциал

Определение. Выражение называется полным приращением функции в точке .

Если функция имеет непрерывные частные производные, то

Применяя теорему Лагранжа к выражениям, стоящим в квадратных скобках, получим:

,

где . Находим

.

Так как частные производные непрерывны в точке , то справедливы равенства:

.

Определение. Выражение называется полным приращением функции в точке , где и – бесконечно малые функции при и соответственно.

Определение. Полным дифференциалом функции называется главная, линейная относительно и часть приращения функции в точке :

Для функции произвольного числа переменных имеем:

.

Пример. Найти полный дифференциал функции .

;

.

Пример. Найти полный дифференциал функции

; ;

.

3. Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности

нормаль

N

касательная плоскость

Пусть и – точки данной поверхности. Проведем прямую . Плоскость, проходящая через точку , называется касательной плоскостью к поверхности, если угол между секущей и этой плоскостью стремится к нулю, когда точка стремится к точке по поверхности (стремится к нулю расстояние ).

Определение. Нормалью к поверхности в точке называется прямая, проходящая через точку перпендикулярно касательной плоскости к этой поверхности.

Если поверхность задана уравнением , где – функция, дифференцируемая в точке , то касательная плоскость в точке существует и определяется уравнением:

.

Уравнение нормали к поверхности в этой точке имеет вид:

.

Геометрическим смыслом полного дифференциала функции двух переменных в точке является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки к точке .

Геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

Пример. Найти уравнения касательной плоскости и нормали к поверхности

в точке . Находим:

;

Уравнение касательной плоскости имеет вид:

Уравнение нормали имеет вид:

4. Приближенные вычисления с помощью полного дифференциала

Пусть функция дифференцируема в точке . Найдем полное приращение этой функции:

или

Если подставить в эту формулу выражение:

,

то получим приближенную формулу:

.

Пример. Вычислить приближенно значение , исходя из значения функции при

Из заданного выражения определяем = 1,04 – 1 = 0,04, = 1,99 – 2 = -0,01,

= 1,02 – 1 = 0,02.

Находим значение функции = .

Определяем частные производные:

; ; .

Полный дифференциал функции равен:

.

Приведём точное значение этого выражения: 1,049275225687319176.

5. Частные производные и дифференциалы высших порядков

Пусть функция и её частные производные и определена в некоторой области D. Если существуют частные производные функций и по и в этой области, то они называются частными производными второго порядка:

Аналогично определяются частные производные более высоких порядков от функции в области

Определение. Частные производные по различным аргументам вида и т.д. называются смешанными производными.

Теорема. Пусть функция в некоторой окрестности точки имеет частные производные и смешанные частные производные второго порядка . Если непрерывны в точке , то они совпадают в этой точке, т.е. в точке выполняется соотношение:

.

Пусть функция дифференцируема в некоторой окрестности точки . Её дифференциал

является функцией переменной точки и функций приращений независимых переменных. Будем считать приращения независимых переменных постоянными , тогда дифференциал станет функцией точки и от него, в свою очередь можно брать дифференциал, если этот дифференциал существует.

Определение. Дифференциалом второго порядка (вторым дифференциалом) функции называется дифференциал от её первого дифференциала:

.

Аналогично определяются дифференциал третьего порядка от функции :

И вообще, дифференциал го порядка от функции :

.

Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего в скобках выражения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]