Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 3.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.36 Mб
Скачать

5. Смешанное произведение трех векторов. Свойства смешанного произведения векторов

Определение. Смешанным произведением трех векторов называется скалярное произведение векторного произведения первых двух векторов на третий.

Обозначение: , т.е.

Из этого определения следует, что три вектора компланарны (параллельны одной плоскости) тогда и только тогда, когда их смешанное произведение равно нулю.

Теорема. Смешанное произведение трех векторов равно определителю третьего порядка, строки которого составлены из координат этих векторов, т.е.

,

где .

Доказательство. Имеем:

= .

Следовательно,

= = .

Так как

= ,

то смешанное произведение трех векторов можно определить как скалярное произведение первого вектора на векторное произведение двух других.

Из свойств определителя следует: 1) при циклической перестановке смешанное произведение не меняется, т.е.

При перестановке любых двух векторов оно меняет только знак, сохраняя абсолютную величину, т.е.

3)необходимым и достаточным условием компланарности трех векторов является равенство нулю определителя из их координат.

Теорема. Модуль смешанного произведения трех векторов равен объему параллелепипеда, построенного на векторах - сомножителях.

Доказательство. Пусть V - объем параллелепипеда , построенного на векторах . Так как равен площади параллелограмма , а объем параллелепипеда равен произведению

площади основания на высоту

,

то

Следствие. Объем пирамиды определяется формулой:

,

где Действительно, объем пирамиды равен объема параллелепипеда, построенного на векторах , , .

Пример. Доказать, что точки лежат в одной плоскости.

Найдем координаты векторов:

Найдем смешанное произведение полученных векторов:

.

Таким образом, полученные выше векторы компланарны, следовательно точки и лежат в одной плоскости.

Пример. Найти объем пирамиды и длину высоты, опущенной на грань , если вершины имеют координаты

Найдем координаты векторов: .

Объем пирамиды

Для нахождения длины высоты пирамиды найдем сначала площадь основания :

= (ед.2).

Так как V = ; (ед.).

3.2 Виды уравнений прямой и плоскости в декартовой системе координат

1. Общее уравнение прямой на плоскости

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Это уравнение называют общим уравнением прямой.

В зависимости от значений постоянных и возможны следующие частные случаи:

  • – прямая проходит через начало координат;

  • - прямая параллельна оси ;

  • – прямая параллельна оси ;

  • – прямая совпадает с осью ;

  • – прямая совпадает с осью .

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

3. Уравнение прямой по точке и нормальному вектору

В декартовой прямоугольной системе координат вектор с координатами перпендикулярен прямой, заданной уравнением Он называется нормальным вектором прямой.

Пример. Найти уравнение прямой, проходящей через точку перпендикулярно вектору .

Для и уравнение прямой примет вид: . Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем . Следовательно . Искомое уравнение запишется в виде .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]