Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Орлова Линейная алгебра 2-е изд.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.61 Mб
Скачать

Оглавление

Е.Ю. Орлова 1

Линейная алгебра и аналитическая геометрия 1

Учебно-методическое пособие к изучению курса, 1

практические задания, задания для контрольной и курсовой работы 1

Введение 3

Глава 1. Линейная алгебра 4

1.1. Матрицы, действия с матрицами 4

Матрицей называется прямоугольная таблица чисел. Для обозначения матриц используются заглавные буквы латинского алфавита A,B,C,D,FРазмерностью матрицы называется величина n×m, где nчисло строк, а m – число столбцов матрицы A. Элементы матриц обозначаются прописными буквами латинского алфавита и имеют двойной индекс, например , где i – номер строки, j – номер столбца матрицы A, в котором находится элемент . 4

Над матрицами можно совершать следующие действия: 5

1. При сложении матрицы A размерности n×m и матрицы B размерности n×m получается матрица C размерности n×m, каждый элемент которой равен сумме соответствующих элементов матриц A и B, т.е. . 5

1.2. Определители. Решение систем линейных уравнений методом Крамера 8

1.3. Решение систем линейных уравнений методом Гаусса 12

(1.3.2) 12

1.4. Обратная матрица. Матричный метод решения систем линейных уравнений 16

1.5. Модель межотраслевого баланса Леонтьева 24

1.6. Собственные векторы и собственные значения матрицы 32

1.7. Линейная модель международной торговли 35

Глава 2. Аналитическая геометрия на плоскости 38

2.1. Прямая на плоскости 38

2.2. Линейная модель издержек и прибыли 41

2.3. Линейная модель спроса и предложения 46

2.4. Кривые второго порядка 53

Задание для выполнения контрольной работы 61

Методические указания к выполнению курсовой работы 63

Задание по курсовой работе 66

Задача №2 67

Литература 70

ПРИЛОЖЕНИЕ 1. Вычисление обратной матрицы с использованием ППП Excel 71

Для заметок

74