Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Присный А[1].В. Экология.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
440.83 Кб
Скачать

1.3. Методы экологии

Будучи одной из наук естественного цикла, экология использует общие для него теоретические и эмпирические методы: анализ и синтез, дедукцию и индукцию, наблюдение, сравнение (включая измерение) и эксперимент (включая моделирование). Эмпирические методы подразделяются на "полевые" и "лабораторные", соответственно тому, проводятся ли они в условиях, приближенных к естественным или в условиях, контролируемых исследователем. И те и другие могут предполагать использование инструментария: измерительного и аналитического оборудования, устройств для фиксации, снятия и обработки данных. Эмпирические данные могут быть использованы лишь после их теоретической обработки, то есть после включения в логическую конструкцию: гипотезу, теорию, концепцию.

Цели эмпирических исследований непосредственно или опосредованно связаны с практической деятельностью человека и состоянием среды его обитания. Это могут быть: выяснение закономерностей, объяснение явления, описание ситуации, прогноз ситуации, практические рекомендации.

В последнее время особую важность приобрели планомерные, поддающиеся эффективному анализу экологические исследования, складывающиеся в мониторинг - систему долгосрочных наблюдений, оценки, контроля и прогноза состояния и изменения объектов. Мониторинг принято делить на фоновый, глобальный, региональный и импактный (в особо опасных зонах и местах). По способам ведения различают космический, авиационный и наземный мониторинг. В систематизации и анализе накапливаемых данных особое значение имеют компьютерные технологии.

1.4. Живые и неживые системы

1.4.1. Общие сведения

Поскольку предметом экологии являются структура и динамика окружения любого произвольно выбранного объекта в живой системе и взаимодействие объекта с этим его окружением, следует, прежде всего, охарактеризовать живую систему.

Системой принято называть множество тел или иных объектов, связанных общим энергетическим процессом в единое целое, взаимодействующих и взаимоопределяющих положение и состояние друг друга и всего множества. Верной будет и противоположная (в написании) формулировка: система - это целое, состоящее из частей-элементов, находящихся в движении, взаимодействующих и взаимоопределяющих положение и состояние друг друга и всего целого. Реально существуют только открытые системы, способные обмениваться с неотъемлемой от них внешней средой (система и среда - соэлементы системы более емкого уровня) материей, энергией и информацией. Собственно система и ее внешняя среда - есть результат дифференцировки, разделения целого на противоположные комплементарные части не существующие одна без другой.

Принимая, что живые и неживые системы лишь различные состояния материальных систем и ориентируясь на "широкое" определение жизни как явления (Жизнь - есть расширенное воспроизводство информации в материальных системах), выделим наиболее существенные характеристики живых систем, разновидностью которых является Биосфера.

1. В живых системах время имеет антиэнтропийную направленность, а в неживых системах направление течения времени совпадает с направлением роста энтропии.

2. Живые системы, в отличие от неживых, характеризуются устойчивым ростом информации. (Структурная и. - мера сложности, тепловая и. - мера работоспособности, собственно информация - мера порядка, организованности, определенности связей, отношений и взаимодействий.)

3. Каждый вид элементов в живых системах структурно и функционально комплементарен (дополнителен) к сумме остальных. В неживых системах элементы не обладают функциональностью. Строение и функция элемента взаимозависимы.

4. Живые системы целостны: для них характерны относительная завершенность строения (количественная корреляция частей в целом) и соответствующая функциональная определенность (качественная корреляция частей в целом).

5. Живые системы энергозависимы: потребление энергии на каждую усредненную единицу времени преобладает над выделением энергии. Отсроченное высвобождение энергии, сопровождающееся увеличением длительности ее удержания, лежит в основе поддержания устойчиво неравновесного состояния. Неживые системы характеризуются устойчиво равновесным состоянием. Внутренняя организация живых систем может быть представлена в виде сети накопителей, передатчиков и трансформаторов энергии.

6. Биосфера образована условно обособленными в пространстве и времени органическими телами и неживой внутренней средой (по отношению к конкретному телу - это внешняя среда), связанными в динамическое единство круговоротом вещества, потоком энергии и общностью информации.