- •Ю.В. Александрова, а.Ю. Постнов Экологические основы природопользования
- •Оглавление
- •Основы экологии
- •Природные ресурсы и их классификация
- •Энергетические ресурсы
- •Основные показатели эффективности использования энергии и энергосбережения
- •Принципы рационального природопользования
- •Основные химические производства и выбросы
- •Принципы и технологии экологизации химических производств
- •Способы экологизации производства
- •Переработка отходов
- •Классификация отходов
- •Состав и свойства отходов
- •Методы переработки, утилизации и обезвреживания отходов
- •Термическая обработка твердых отходов
- •СхНуОz → со, н2, со2, СnHm, с
- •Задача №1. Расчет материального и теплового баланса печи пиролиза твердых отходов
- •Данные для расчета задачи № 1
- •Сточные воды и очистка сточных вод
- •Виды производственных сточных вод
- •Классификация производственных сточных вод
- •Основные показатели качества воды
- •Выбор способа очистки сточных вод
- •Механическая очистка
- •Химическая очистка
- •Биологическая очистка сточных вод
- •Классификация биофильтров
- •Задача №2. Расчет капельных и высоконагружаемых биофильтров
- •Расчет рециркуляции для капельных и высоконагружаемых биофильтров
- •Особенности расчета капельных биофильтров
- •Особенности расчета высоконагружаемых биофильтров
- •Задача№2
- •Задача №3. Расчет аэротенков
- •Задача №3
- •Сушка влажных отходов производства
- •Задача №4. Расчет типовой барабанной сушилки
- •Данные для расчета задачи №4
- •Газообразные промышленные выбросы
- •Анализ загрязнения атмосферного воздуха газообразными технологическими выбросами
- •Задача №5. Расчет основных параметров загрязняющих выбросов газообразными технологическими выбросами
- •1) Определение максимальной приземной концентрации вредного вещества
- •2) Определение опасного расстояния от источника выброса.
- •3) Определение предельно допустимых выбросов вредных веществ в атмосферу
- •4) Определение минимальной высоты источника выброса.
- •Пример расчета
- •Задача № 5
- •Задача №6. Расчет величины платежей предприятия
- •Способы очистки промышленных газообразных выбросов
- •Экологические последствия загрязнения биосферы
- •Образование смога
- •Парниковый эффект
- •Образование кислотных дождей
- •Механизм образования кислотных осадков
- •Разрушение озонового слоя.
- •Литература:
Парниковый эффект
Парниковый эффект – способность атмосферы накапливать тепло. Т.е. действует принцип парника. Солнечные (коротковолновые) лучи свободно проходят через пленку или стекло, нагревают почву, от которой тепло передается воздуху. Воздух и почва испускают длинноволновую радиацию, которую стекло или пленка не пропускают. Температура в парнике или теплице оказывается на десятки градусов выше, чем снаружи. Это явление и получило название парникового эффекта. Часть длинноволновой радиации, излучаемой Землей, удерживается в атмосфере, в результате чего среднегодовая температура воздуха у поверхности Земли равна +140. При отсутствии парникового эффекта температура воздуха была бы ниже на 370. Исследования подтверждают, что климат быстро реагирует на повышение парниковых газов в атмосфере, однако, расчеты показывают, что потепление климата только на 40% вызвано антропогенным воздействием, остальные 60% связаны с природными факторами. Благодаря парниковому эффекту среднегодовая температура у поверхности Земли в последнее тысячелетие составляет примерно 15 °С (рис. 2).
Усиление парникового эффекта в индустриальную эпоху связано в первую очередь с возрастанием содержания в атмосфере техногенного диоксида углерода за счет сжигания ископаемых видов органического топлива предприятиями энергетики, металлургическими заводами, автомобильными двигателями:
С + О = СО2,
С3H8+ 502 = ЗСО2 + 4Н2О,
С25Н52 + 38О2 = 25СО2+26Н20,
2С8Н18+25О2 = 16СО2 + 18Н2О.
Основные антропогенные факторы и процессы, которые могут вызвать потепление климата:
Поступление СО2 при сжигании топлива (выделяется 80% СО2 от массы сожженного). Необратимые процессы начнутся когда концентрация СО2 вдвое превысит концентрацию газов в доиндустриальную эпоху
Поступление оксида азота при сжигании топлива;
Утечка СН4 в процессе добычи и транспортировке газа;
Поступление СН4 от жвачных животных и рисовых полей.
Природные факторы:
Вулканическая активность, насыщающая атмосферу оксидом серы и СО2,
Поступление парниковых газов из разломов и рифтовых зон;
Поступление оксида азота в атмосферу из почвы, мирового океана;
Поступление CH4 из болот, из термитников. Суммарное поступление из антропогенных и природных источников составляет около 1 млрд т. в год.
Образование кислотных дождей
Главные кислотообразующие выбросы в атмосферу - диоксид серы SO2 и оксиды азота NОх (монооксид, или оксид азота NО, диоксид азота NO2).
Природными источниками поступления диоксида серы в атмосферу являются главным образом вулканы и лесные пожары. Естественная фоновая концентрация SО2 в атмосфере стабильна, включена в биохимический круговорот и для экологически благополучных территорий России равна 0,39 мкг/м3 (Арктика) - 1,28 мкг/м3 (средние широты). Эти концентрации значительно ниже принятого в мировой практике предельно допустимого значения (ПДК) по SО2, равного 15 мкг/м3.
Общее количество диоксида серы антропогенного происхождения в атмосфере сейчас значительно превышает ее естественное поступление и составляет в год около 100 млн т (для сравнения: природные выбросы SO2 в год равны примерно 20 млн т). При сжигании каждого миллиона тонн угля выделяется около 25 тыс. т серы в виде главным образом ее диоксида (до триоксида окисляется менее 3% серы); в 4-5 раз меньше окисленной серы дает сжигание мазута.
Природные поступления в атмосферу оксидов азота связаны главным образом с электрическими разрядами, при которых образуется NО, впоследcтвии - NО2. Значительная часть оксидов азота природного происхождения перерабатывается в почве микроорганизмами, т. е. включена в биохимический круговорот. Для экологически благополучных районов России естественная фоновая концентрация оксидов азота равна 0,08 мкг/м3 (Арктика) - 1,23 мкг/м3 (средние широты), что существенно ниже ПДК, равного 40 мкг/м3.
Оксиды азота техногенного происхождения образуются при сгорании топлива, особенно если температура превышает 1000 °С. При высоких температурах часть молекулярного азота окисляется до оксида азота NО, который в воздухе немедленно вступает в реакцию с кислородом, образуя диоксид NO2 и тетраоксид диазота N2O4. Первоначально образующийся диоксид азота составляет лишь 10% выбросов всех оксидов азота в атмосферу, однако в воздухе значительная часть оксида азота превращается в диоксид - гораздо более опасное соединение.
