
- •Лекция №1
- •Основные понятия и определения бжд
- •2. Аксиоматика бжд
- •1.1.4 Принципы, методы и средства безопасности жизнедеятельности
- •Лекция 2 Тема: Негативные факторы среды обитания
- •Виды, источники и уровни негативных факторов производственной и бытовой среды.
- •2.1 Негативные воздействия в системе «Человек-среда обитания»
- •1.2.2 Виды, источники и уровни негативных факторов производственной и бытовой среды
- •2.3 Поражающие факторы чрезвычайных ситуаций
- •Лекция 3 Человек как элемент эргатической системы
- •1. Антропометрические характеристики человека
- •2. Работоспособность человека и ее динамика
- •Период прогрессивного снижения работоспособности и эмоционально-волевого напряжения.
- •3. Надежность человека как элемента эргатической системы
- •2. Человек как элемент системы «Человек – Среда обитания».
- •2.1 Анализаторы.
- •2.2 Общие характеристики анализаторов
- •2.3 Основные психофизические законы восприятия
- •2.4 Характеристики анализаторов человека
- •Лекция 4 Человек как элемент эргатической системы
- •1. Антропометрические характеристики человека
- •2. Работоспособность человека и ее динамика
- •Период прогрессивного снижения работоспособности и эмоционально-волевого напряжения.
- •3. Надежность человека как элемента эргатической системы
- •Лекция Риск как количественная мера опасности.
- •2.Управление риском
- •1. Анализаторы.
- •2. Характеристики анализаторов
- •3 Основные психофизические законы восприятия
- •4. Характеристики анализаторов человека
- •2. Аксиоматика бжд 3
- •1. Действие шума на организм человека
- •2. Частотный диапазон звука
- •3. Измерение производственного шума
- •4. Классификация шума
- •4.1 Классификация шума по источникам возникновения
- •Классификация по характеру спектра и временным характеристикам
- •Лекция 9 безопасность в чрезвычайных ситуациях
- •Классификация чс
- •2.1 Чс техногенного характера
- •2.2 Чс природного характера
- •2.3 Чс экологического характера
- •2. Тепловые и осколочные поля
- •3. Выброс химически опасных веществ
- •4. Выброс радиоактивных веществ
- •Контрольные вопросы
- •Лекция 9
- •2. Аксиоматика бжд 3
- •1. Действие шума на организм человека
- •2. Частотный диапазон звука
- •3. Измерение производственного шума
- •4. Классификация шума
- •4.1 Классификация шума по источникам возникновения
- •Классификация по характеру спектра и временным характеристикам
- •2. Аксиоматика бжд 3
- •1. Нормирование производственного шума
- •Методы борьбы с шумом
- •3. Ультразвук. Нормирование и защита
- •4. Инфразвук. Нормирование и защита
- •5. Вибрация
- •5.1 Виды вибрации и ее источники
- •5.2 Характеристики вибрации
- •5.3 Действие вибрации на организм человека
- •5.4 Нормирование вибрации
- •5.5 Защита от вибрации
- •Лекция 12 Электромагнитные неионизирующие излучения (промышленных и радиочастот)
- •1. Источники и характеристики электромагнитных полей радиочастот.
- •Параметры электромагнитных излучений.
- •3. Воздействие электромагнитных полей на организм человека
- •4. Нормирование электромагнитных излучений
- •5. Защита от электромагнитных излучений
- •2. Аксиоматика бжд 3
- •Введение
- •1. Краткая характеристика различных видов ии
- •2. Единицы активности и дозы ионизирующих излучений
- •3.1 Механизм действия ии на биологические объекты
- •Внутреннее облучение.
- •3. 2 Воздействие радиации на организм человека
- •4. Источники ионизирующих излучений
- •5. Нормирование ионизирующих излучений.
- •7 Защита от ионизирующих излучений
- •6. Дозиметрический контроль
- •Электробезопасность
- •1. Воздействие электрического тока на организм
- •2. Пороговые значения токов
- •3. Электрическое сопротивление тела человека
- •4. Анализ опасности прикосновения к токоведущим частям эу
- •4.1 Нормальный режим работы электроустановок
- •4.2 Аварийный режим
- •Лекция 16
- •Классы электроустановок
- •Классы опасности помещений
- •3. Требования к персоналу
- •4. Организационно-технические мероприятия
- •5. Технические средства защиты в электроустановках
- •1.3 Защитное заземление
- •Лекция 18 безопасность в чрезвычайных ситуациях
- •1 Основные определения и понятия, связанные с чрезвычайными ситуациями
- •Классификация чс
- •1.1 Чс техногенного характера
- •1.2 Чс природного характера
- •1.3 Чс экологического характера
- •Лекция 19
- •2. Тепловые и осколочные поля
- •3. Выброс химически опасных веществ
- •4. Выброс радиоактивных веществ
- •Контрольные вопросы
- •Основные определения
- •1.2. Виды горения
- •1.3 Виды процесса возникновения горения
- •1.4 Характеристики пожароопасных веществ
- •Температура самовоспламенения -
- •3. Верхний концентрационный предел воспламенения (для газов)-
- •Основные источники возникновения пожаров
- •3. Оценка пожарной опасности промышленных предприятий
- •4. Пожарная профилактика в производственных зданиях
2.3 Основные психофизические законы восприятия
Закон Вебера-Фехнера. Непосредственной основой развития психофизики явились работы немецкого психофизика Э.Г. Вебера, который, изучая связь между интенсивностью физического раздражителя (света, звука, давления на кожу груза) и его ощущением, в 30-х годах прошлого века обнаружил, что ощущения у человека увеличиваются пропорционально не абсолютному приросту интенсивности раздражителя, а его относительному приросту. На основе этих наблюдений Э.Г. Вебер вывел следующий закон, названный его именем:
где J - интенсивность исходного раздражителя,
-
минимально различимое приращение
интенсивности раздражителя (дифференциальный
порог различения).
Действие этого закона можно проиллюстрировать
следующим образом. Если световой
раздражитель имеет исходную интенсивность
J0 = 100 кандел, то,
чтобы ощутить прирост интенсивности
света, нужно увеличить ее минимум на
=
1 канделу. Если же исходная интенсивность
составляет J0*
= 1000 свечей, то, чтобы ощутить прирост
интенсивности сигнала, ее надо увеличить
минимум на
*
кандел. Таким образом, для световых
сигналов отношение
;
для звуковых раздражителей оно оказалось
равным 0,1. Справедливость этого закона
подтверждается, главным образом, при
средних интенсивностях раздражителей.
Исходя из закона Э.Г. Вебера, Г.Т. Фехнер, физик и философ XIX в., выражая приращения интенсивности раздражителя и приращения ощущения в дифференциалах, вывел следующую зависимость:
означавшую,
что минимальное приращение ощущения
(dE) над абсолютным порогом
(J0) пропорционально
(k - коэффициент
пропорциональности) относительному
приращению интенсивности раздражителя
Интегрируя это уравнение, он получил
формулу, связывающую величину ощущения
(Е) с интенсивностью раздражителя (J):
Е = k(1nJ - C).
Для исключения из формулы постоянной интегрирования С Фехнер допустил, что при величине раздражителя, равной абсолютному порогу (т.е. при J = J0), ощущение Е = 0. В таком случае из последней формулы следует, что С = lnJ0.
Подставляя в нее полученное значение С, он пришел к формуле:
E = k(InJ - InJ0).
Установленная зависимость получила наименование основного психофизического закона Вебера - Фехнера. Из этого закона следует, что с увеличением интенсивности раздражителя величина его ощущения растет значительно медленнее, чем сам раздражитель - по логарифмическому закону (если интенсивность раздражителя возрастает в 100, в 1000 раз, то величина ощущения по закону натурального логарифма увеличивается соответственно в 4,6, в 6,9 раза).
Закон Стивенса. Следует отметить, что закон Вебера - Фехнера справедлив только при средних значениях интенсивностей раздражителей. Вблизи пороговых значений сигнала он не дает достаточно точных соответствий.
В 50-х годах нашего столетия, с разработкой более прямых и точных методов измерения ощущений, С.Стивенсом (S.Stevens) были получены экспериментальные данные, указывающие на то, что связь между интенсивностью стимула и величиной его ощущения правильнее описывать не логарифмической, а степенной зависимостью следующего вида:
E = k (J - J0) n,
где k - константа, n - показатель, который определяется экспериментально, обусловлен видом раздражителя и изменяется в пределах от 0,2 до 3,5.
Согласно формуле (1.4.4) , а также формуле (1.4.5), при интенсивности раздражителя, равной значению абсолютного порога, ощущение падает до нуля. Отличие формулы С.Стивенса заключается в том, что она предполагает у отдельных раздражителей (для которых n = 1) существование линейной связи между увеличением интенсивности сигнала и уровнем его ощущения, а для целого ряда раздражителей (с n 1) - возможность значительно более быстрого роста ощущения, по сравнению с ростом интенсивности раздражителя. Так, если при восприятии яркости, громкости, запахов значение n колеблется в пределах 0,2 - 0,6, а рост величины ощущений, как в законе Вебера - Фехнера, отстает от роста интенсивности соответствующих раздражителей, то при восприятии отдельных раздражителей, например сигналов электрического тока, когда n =3,5, рост ощущений в несколько раз опережает рост интенсивности воздействующего сигнала.