
- •Определение предмета, его цели, задачи и место в подготовке дипломированного специалиста.
- •Диффузионная сварка
- •Классификация композиционных материалов
- •1. Физико-технологические основы получения композиционных материалов
- •Изготовление резиновых деталей и полуфабрикатов
- •Формовочные и стержневые материалы и их свойства.
- •Литье по выплавляемым моделям
- •Формовочные и стержневые материалы и их свойства.
- •Электрошлаковое литье заготовок
- •Исходные материалы металлургического производства: руда, топливо, флюсы, раскислители.
- •Производство чугуна.
- •Прямое восстановление железа.
- •Способы производства заготовок деталей машин: горячая объемная штамповка, холодная штамповка, листовая штамповка.
- •Влияние технологии обработка давлением на свойства материалов.
- •Выбор способа получения штамповок.
- •Способы получения порошков.
- •Формование порошков. Спекание. Напыление материалов.
- •Понятие неразъемного соединения: сварка, пайка, склеивание.
- •Классификация видов сварки.
- •Физико-химические основы свариваемости.
- •Электродуговая сварка.
- •Строение и свойства электрической дуги.
- •Ручная дуговая сварка.
- •Автоматическая сварка под флюсом.
- •Сварка в среде защитных газов.
- •Электрошлаковая сварка.
- •Лазерная сварка.
- •Ультразвуковая сварка
- •Сварка взрывом.
- •Способы пайки
- •Получение неразъемных соединений склеиванием.
- •Формовочные и стержневые материалы и их свойства.
- •Основы технологии формообразования поверхностей деталей механической обработкой.
- •Тепловые явления при резании металлов.
- •Режимы резания
- •Геометрия инструмента.Лезвиные инструменты:сверла,фрезы,строгальные резцы
- •Электрофизические и электрохимические методы обработки
Классификация видов сварки.
По используемой энергии все виды сварки можно разделит на: механическую; химическую; электрическую; электромеханическую; химико-механическую и так далее.
Для получения сварного соединения, механическая сварка требует осуществления пластической деформации кромок свариваемых заготовок. Химическая сварка характеризуется нагревом металла заготовок до появления расплава в зоне сварки посредством превращения химической энергии в тепло. Электрическая сварка основана на превращении электрической энергии в тепловую. Это превращение может происходить различными способами: выделением тепла при прохождении электрического тока через шлак; использованием электрической дуги; индуцированием тока высокой частоты. Лучевая сварка основана на превращении энергии луча света или электронного луча в тепловую (использование лазерного луча или энергии пучка электронов). Электромеханическая сварка основана на нагреве металла заготовок методом электросопротивления и последующим пластическим деформированием нагретого металла. При химико-механической сварке металл заготовок нагревается путем превращения химической энергии в тепловую с последующим пластическим деформированием металла.
Физико-химические основы свариваемости.
Свариваемость – свойство металла или сочетания металлов образовывать при установленной технологии сварки сварные соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия.
Под свариваемость понимают отношение сплавов к физико-химическим процессам, протекающим в зоне сварки. При сварке многих сплавов (как черных, так и цветных) ухудшаются механических свойств в зоне сварного 336шва; образуются сварочные дефекты (трещины, закалочные структуры, пористость и т.д.). Следовательно, эти сплавы обладают пониженной свариваемостью. Физическая свариваемость определяется свойствамисоединяемых металлов, что в свою очередь, определяет протекание соответствующих физико-химических процессов в зоне сварного шва. Отношение сплава к конкретному способу сварки называют технологической свариваемостью. Все однородные металлы обладают физической свариваемостью. Различие в свойствах разнородных металлов приводит к тому, что не всегда возможно протекание необходимых для сварки физико-химических процессов. Поэтому разнородные металлы не всегда обладают физической свариваемостью
Термические способы сварки.
Термический класс включает все виды сварки с использованием тепловой энергии (дуговая сварка, газовая сварка, плазменная сварка и т. д.).
Газовая сварка - сварка плавлением, при которой для нагрева используется тепло пламени смеси горючих газов с кислородом, сжигаемых с помощью горелки.
Газовая сварка обладает следующими преимуществами: способ сравнительно прост, не требует сложного и дорогого оборудования, а также источника электроэнергии. Изменяя тепловую мощность пламени, его положение относительно места сварки и скорость сварки, можно в широких пределах регулировать скорость нагрева и охлаждения свариваемого металла. При помощи газовой сварки можно сваривать почти все металлы, применяемые в технике. Такие металлы, как чугун, медь, латунь, свинец легче поддаются газовой сварке, чем дуговой.
К недостаткам газовой сварки относятся: высокая стоимость горючего газа (ацетилена) и кислорода; небольшая скорость нагрева металла; большая зона теплового воздействия на металл и взрывоопасность процесса.
В газовой сварке используются горючие газы: ацетилен, водород, метан, пропан и пары керосина. Основным горючим газом является ацетилен
Плазменная сварка – это сварка плавлением, при которой нагрев проводится направленным потоком дуговой плазмы (плазменной струей).
Плазменная струя , применяемая для сварки , предстваляет собой направленный поток частично или полностью ионизированного газа ,имеющего температуру 10000 …20000 С.В качестве плазмообразующих газов применяют азот, аргон, водород, гелий, воздух и их смеси.
Плазму получают, пропуская поток газа через столб сжатой электрической дуги . Столб дуги , горящий между электродом и соплом, помещают в узкий канал с охлаждаемыми стенками, и через него продувают газ. Столб дуги сжимается, что приводит к повышению в нем плотности энергии и температуры. Частые столкновения частиц продуваемого газа приводят к их высокой ионизации. Загорается плазменная дуга . В качестве плазмообразующего газа обычно используют аргон. Для получения более мощной дуги используют водород или азот.