- •Г.Я. Пятибратов история развития и современные проблемы электроэнергетики и электротехники
- •140400 Электроэнергетика и электротехника
- •Оглавление
- •4.3. Задачи и проблемы дальнейшего повышения технического уровня современных 71
- •5. Проблемы и тенденции развития и практики электроэнергетики 76
- •Основные этапы развития электротехники и электроэнергетики
- •Историческая обусловленность возникновения
- •1.2. История становления электротехники
- •1.3. Основные этапы развития электромеханики
- •1.4. История возникновения электропривода
- •Зарождение и начальные этапы развития
- •1.6. Начало электрификации промышленности в России
- •1.7. Основные этапы развития электротехники
- •Значение электротехники и электроэнергетики для технического прогресса
- •Появление и развитие в россии системы высшего образования по электротехнике и электроэнергетике
- •2.1. История появления высшего технического образования в России
- •2.2. Возникновение системы подготовки специалистов по электротехнике и электроэнергетике
- •2.3. Подготовка специалистов по электротехнике и электроэнергетике в Новочеркасском политехническом вузе
- •Развитие теории электротехники и электромеханических систем
- •3.1. Становление теории электромеханических систем
- •3.2. Этапы развития теории электромеханических систем
- •3.3. Современные направления развития теории электромеханических систем
- •4. Проблемы и тенденции развития практики современных электротехнических систем
- •4.1. Задачи совершенствования электротехнических устройств и систем
- •4.2. Направления развития элементной базы электромеханических систем
- •4.2.1. Направления совершенствования механических преобразователей движения
- •4.2.2. Совершенствование конструкций электрических двигателей
- •4.2.3. Совершенствование полупроводниковых преобразователей
- •4.2.4. Развитие микропроцессорных средств управления
- •4.2.5. Совершенствование средств измерения в электротехнике и электроэнергетике
- •4.3. Задачи и проблемы дальнейшего повышения технического уровня современных электромеханических систем
- •Проблемы и тенденции развития и практики электроэнергетики
- •5.1. Общие закономерности развития теории
- •5.2. Взаимообусловленность развития теории
- •5.3. Основные этапы развития электроэнергетики России
- •5.3.1. Начало развития электроэнергетики России
- •5.3. 2. Послевоенное развитие электроэнергетики России
- •5.3.3. Особенности развития современной
- •5.4. Развитие электроэнергетических систем
- •5.4.1. Особенности развития электроэнергетических систем
- •5.4.2. Проблемы развития электроэнергетических систем и пути их решения
- •5.5. Развитие современных электрических сетей
- •Состояние и перспективы развития
- •Современное состояние электроэнергетики России
- •6.2. Задачи развития современной электроэнергетики России
- •6.3. Перспективы развития электроэнергетики России
- •Перспективы и направления развития
- •7.1. Возможности использования имеющихся энергоресурсов в XXI в.
- •7.2. Перспективы использования традиционных источников энергии
- •7.3. Перспективы развития энергетики, использующей возобновляемые источники энергии
- •7.4. Перспективы развития атомной энергетики
- •7.5. Перспективы использования термоядерной энергии
- •Заключение
- •Библиографический список
- •История развития и соременные проблемы электротехники
- •346428, Г. Новочеркасск, ул. Просвещения, 132
- •346428, Г. Новочеркасск, ул. Просвещения, 132
6.3. Перспективы развития электроэнергетики России
В 2003 г. была разработана программа «Энергетическая стратегия России», которая на период до 2020 г. предусматривала высокоэффективное производство электроэнергии, экономичные системы её передачи, распределения и использования.
Разработанная в 2010 г. Минэнерго РФ и ОАО «СО ЕЭС» «Программа модернизации электроэнергетики России на период до 2030 г.» имеет следующие главные цели:
а) кардинальное обновление электроэнергетики на базе отечественного и мирового опыта;
б) преодоление нарастающего технологического отставания;
в) морального и физического старения основных фондов;
г) повышение надёжности энергоснабжения;
д) повышение энергетической безопасности страны;
е) снижение тарифов на электроэнергию и тепло.
В Программе предусматривается создание эффективной системы управления функционированием электроэнергетики России, на базе новых перспективных технологий управления производством, передачей и распределением электроэнергии, созданием технологических интеллектуальных электроэнергетических систем и новых энергетических технологий на базе, например:
- распределённой генерации электроэнергии с использованием возобновляемых источников энергии;
- новых проводников для линий электропередач и накопителей энергии;
- прямого преобразования солнечной энергии;
- котлов с циркулирующим кипящим слоем.
Решение этих задач должно сочетаться с углубленным анализом вопросов развития, функционирования, устойчивости и надежности Единой энергетической системы России, ее связей с электроэнергетическими системами других стран, в первую очередь стран СНГ.
К стратегическим целям развития отечественной электроэнергетики в перспективе до 2030 г. следует отнести решение проблемы энергетической безопасности, как важнейшей составляющей государственной энергетической политики, являющейся составной частью национальной безопасности России. При этом развитие электроэнергетики должно обеспечить:
- гарантию надежного энергоснабжения предприятий и населения страны электроэнергией;
- повышение эффективности использования энергоресурсов за счет использования энергосберегающих технологий;
- повышение эффективности функционирования энергетической системы России;
- создание и сохранение целостности Единой энергетической системы на всей территории России с усилением ее интеграции с другими энергетическими объединениями на Евразийском континенте;
- уменьшение вредного воздействия энергетической отрасли на окружающую среду.
Целевые показатели программы включают в себя следующие основные базовые ожидаемые показатели её осуществления:
Снижение удельного расхода топлива на отпуск электроэнергии от ТЭС с 332,7 до 300 у.т. /(кВт·ч) в 2020 г. и до 270 у.т. /(кВт·ч) в 2030 г.
Сокращение потерь электроэнергии в Единой национальной электросети с 4,6 до 3,5 % в 2020 г. и до 3 % в 2030 г.
Сокращение потерь электроэнергии в распределительных электрических сетях с 8,9 до 6,5 % в 2020 г. и 5 % в 2030 г.
Результаты выполненных исследований оптимального развития генерирующих мощностей выявили, что основная часть вводов генерирующих мощностей должна быть осуществлена на ТЭС (от 70 до 180 млн кВт в зависимости от уровня электропотребления) в районах, нуждающихся в новых генерирующих мощностях.
Основным направлением технического перевооружения и реконструкции тепловых электростанций является замена вырабатывающих свой ресурс энергоустановок новыми передовыми, высокоэффективными технологиями и оборудованием, которое размещается в действующих или новых главных корпусах на тех же площадках. На тепловых газовых электростанциях используются установки комбинированного цикла, на тепловых угольных электростанциях – установки со сжиганием топлива в циркулирующем кипящем слое. В отдаленном будущем будут применяться угольные технологии комбинированного цикла с предварительной газификацией угля или его сжиганием в котлах, оборудованных топками с кипящим слоем под давлением.
Вводы генерирующих мощностей на ГЭС и АЭС оказываются незначительными по сравнению с вводами на ТЭС, что связано с существенными капитальными затратами на их строительство и длительным сроком сооружения. Поэтому основными направлениями развития гидроэнергетики в России, например до 2015 г., являются обеспечение реконструкции и технического перевооружения действующих ГЭС, завершение начатого строительства ГЭС, сохранение экономически оправданных темпов гидроэнергетического строительства в последующей перспективе (с суммарным вводом около 2-3 ГВт мощности ГЭС в течение каждых последующих пяти лет).
В Сибири, на Дальнем Востоке, Северном Кавказе, Северо-Западе и в европейской части должны быть достроены гидроэлектростанции общей мощностью около 9000 МВт. Потребность в ускоренном вводе отдельных начатых строительств ГЭС (Бурейская на Дальнем Востоке, Зеленчукская и Ирганайская на Северном Кавказе) обусловлена острым дефицитом электроэнергии в районах их расположения.
Перечень перспективных проектов гидроэнергетических объектов включает в себя десятки средних и крупных гидроэнергоузлов общей мощностью около 40 млн кВт. Наиболее перспективными регионами гидроэнергостроительства в России остаются Дальний Восток, Северо-Запад и Северный Кавказ.
Важным дополнением к развитию традиционной гидроэнергетики является развитие малой гидроэнергетики. В период до 2030 г. может быть сооружено большое число малых ГЭС единичной мощностью менее 30 МВт с суммарной годовой выработкой электроэнергии 2,2 млрд кВт·ч (преимущественно в европейской части страны).
Развитие ядерной энергетики связано с завершением строительства и вводом в эксплуатацию блоков высокой степени готовности, а также проведением работ по продлению срока службы АЭС на экономически оправданный период времени. В долгосрочной перспективе вводы мощности на АЭС будут связаны с заменой демонтируемых блоков на ряде существующих станций на энергоблоки нового поколения, отвечающие современным требованиям безопасности. Предусмотрено строительство головного энергоблока нового поколения на опытной АЭС в поселке Сосновый Бор; сооружением Смоленской АЭС-2 и Южно-Уральской АЭС.
Предполагается существенно расширить использование нетрадиционных возобновляемых источников энергии там, где это экономически выгодно:
- ветроустановок для удаленных потребителей;
- солнечных установок для отопления и горячего водоснабжения;
- выходов геотермальных вод;
- установок по производству биогаза из отходов животноводства.
Доля нетрадиционных источников, включая использование малых рек, может составить к 2015 г. 1,0–1,5 % в общем энергобалансе страны.
В России имеется значительный потенциал приливной энергии, оцениваемый в 270 млрд кВт·ч . В качестве перспективных объектов могут рассматриваться: Тугурская (приливная электрическая станция) ПЭС в южной части Охотского моря, Мезенская ПЭС на Белом море, однако ввод этих объектов возможен лишь в отдалённой перспективе.
При формировании единой энергосистемы России и единого энергообъединения на всем Евразийском континенте ключевыми проблемами становятся проблемы повышения пропускных способностей межсистемных связей.
Программа развития существующей электрической сети России должна предусматривать в ближайшее десятилетие устранение существующих технологических ограничений по передаче электроэнергии между различными регионами России, в том числе обеспечивать лучшее использование энергетических возможностей сибирских гидроэлектростанций. В настоящее время «запертые» мощности региона составляют около 10 млн кВт. Эту задачу можно решить путем создания надежных межсистемных связей, обеспечивающих параллельную работу энергосистем Европейской части, Сибири и Дальнего Востока.
Одним из наиболее эффективных способов решения проблемы повышения пропускных способностей и управляемости линий электропередачи является применение гибких (управляемых) электропередач. Эта принципиально новая технология в области электроэнергетики основана на широком внедрении силовой электроники или преобразовательной техники последнего поколения, новейших технологий в области высокотемпературной сверхпроводимости, микропроцессорных систем автоматического управления и регулирования.
Управление линиями электропередач (ЛЭП) – часть общей системы управления потоками мощности в сетях, включения резервных источников электроэнергии, оптимизации режимов работы ЛЭП и генераторов на электростанциях, в том числе за счет использования различных накопителей электроэнергии (индуктивных, емкостных, электрохимических и других). Все это невозможно осуществить без создания глобальной системы обмена информацией о состоянии всех элементов системы, включая источники, сети и потребителей, а также общей системы управления балансом мощности и энергии в системе.
