Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ист и прб ЭЭ и ЭТ ( Учеб пособ маг 2013 г).doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
609.28 Кб
Скачать

5.4. Развитие электроэнергетических систем

5.4.1. Особенности развития электроэнергетических систем

Современное электроснабжение промышленных, коммунальных и любых иных потребителей электроэнергии производится от тепловых и гидравлических электростанций, вырабатывающих электроэнергию. Электростанции могут находиться вблизи потребителей и, наоборот, могут быть удалены от них на значительные расстояния. И в том, и в другом случае передача электроэнергии от электростанции к потребителю осуществляется по электрическим линиям. Однако, когда потребители удалены от электростанции, передачу электроэнергии приходится осуществлять при повышенном напряжении. Тогда между электростанцией и потребителями необходимо сооружать повышающие и понижающие подстанции.

Часто источники энергии (бассейны топлива, водные бассейны) расположены на значительном расстоянии от крупных заводов, населенных пунктов и других центров потребления. Передача топлива может быть произведена по газопроводам и нефтепроводам, перевозка высококачественных углей — по железным дорогам. Передача тепловой энергии возможна по специальным трубопроводам. Но во многих случаях перевозка топлива, например угля, может быть нерентабельной; более выгодными оказываются сооружение электростанций вблизи бассейна топлива и передача электроэнергии по линиям сети. Это особенно существенно в условиях России, где большая часть наиболее экономичных топливно-энергетических ресурсов находится в азиатской части страны, а основная часть потребителей электроэнергии в настоящее время сосредоточена в центральной части, на юге, западе и Урале. В связи с этим возникает необходимость переброски на большие расстояния значительных потоков электроэнергии. Это требует строительства мощных линий электропередачи высокого напряжения.

В этом отношении исключение могут представлять лишь отдельные промышленные электростанции небольшой мощности либо теплоэлектроцентрали (ТЭЦ). Последние располагаются вблизи потребителей, так как передача пара и горячей воды может быть осуществлена на расстояние не более нескольких километров.

Электростанции при помощи электрических линий (через подстанции) связывают друг с другом для параллельной работы на общую нагрузку. Такая совокупность электростанций, подстанций и приемников электроэнергии, связанных между собой линиями электропередачи, образует энергетическую систему.

При этом получаются существенные технико-экономические преимущества:

1. Возможность увеличения единичной мощности генераторов и электростанции, что снижает стоимость 1 кВт установленной мощности и позволяет резко повысить производительность электромашиностроительных заводов при тех же производственных площадях и трудозатратах.

2. Значительное повышение надежности электроснабжения потребителей.

3. Повышение экономичности работы различных типов электростанций, при этом обеспечиваются наиболее эффективное использование мощности ГЭС и более экономичные режимы работы ТЭС;

4. Снижение необходимой резервной мощности на электростанциях.

Мощность электроэнергетических систем непрерывно возрастает. Из районных электроэнергетических систем создаются мощные объединенные энергосистемы.

Энергетическое производство, и в особенности производство электроэнергии, обладает рядом особенностей, резко отличающих энергетическое производство от других отраслей промышленности.

Первая и важнейшая особенность электроэнергетической системы заключается в том, что производство электроэнергии, ее распределение и преобразование в другие виды энергии осуществляются практически в один и тот же момент времени. При этом электроэнергия нигде не аккумулируется. Именно эта особенность превращает всю сложную электроэнергетическую систему, отдельные звенья которой могут быть географически удалены на многие сотни километров, в единый механизм и приводит к тому, что все элементы системы взаимно связаны и взаимодействуют. Энергия, произведенная в системе, должна быть равна энергии, потребленной в ней. Это равенство должно быть справедливо для любого короткого промежутка времени, поэтому между мощностями энергосистемы имеется точный баланс.

Таким образом, одновременность процессов производства, распределения и преобразования электроэнергии превращает электроэнергетическую систему в единое целое.

Вторая особенность электроэнергетической системы - это относительная быстрота протекания переходных процессов в ней. Волновые процессы совершаются в тысячные или даже миллионные доли секунды; процессы, связанные с короткими замыканиями, включениями и отключениями, качаниями, нарушениями устойчивости, совершаются в течение долей секунды или нескольких секунд.

Третья особенность электроэнергетической системы заключается в том, что она тесно связана со всеми отраслями промышленности, связью, транспортом и т. п. Эта связь осуществляется гигантской совокупностью разнообразнейших приемников электрической системы, получающей питание электроэнергией от современной энергетической системы. Эта особенность энергетической системы резко повышает актуальность обеспечения надежности работы энергосистемы и требует создания в энергетических системах достаточного резерва мощности во всех ее элементах. Все указанные выше проблемы особенно характерны для электроэнергетической системы, которая производит, распределяет и преобразует электроэнергию.

Если рассмотреть процессы производства, распределения и потребления тепловой энергии, то указанные выше особенности в известной мере будут иметь меньшее значение.

В тепловых установках имеется, хотя и очень небольшая, способность аккумуляции (паровые котлы, бойлеры, отопительные приборы и т. п.), имеются даже специальные тепловые аккумуляторы. Следовательно, процессы в отдельных звеньях тепловой энергетической системы (котлы, бойлеры, теплопередачи, приемники тепловой энергии) не так жестко взаимосвязаны, как в электроэнергетической системе. Так, например, прекращение подачи пара в бойлеры теплофикационных станций не вызовет мгновенного изменения режима работы отопительных приборов в тепловой сети. Все же аккумулирующая способность элементов теплоэнергетической системы невелика, и взаимосвязь отдельных элементов играет существенную роль.

Большинство переходных процессов совершается в тепловых системах значительно медленнее, чем в электрических, хотя гидравлические переходные процессы могут все же быть достаточно быстрыми.

Наконец, тепловая энергосистема имеет более ограниченную связь с отраслями народного хозяйства по сравнению с электрической системой.

Так как в современных энергетических системах производство тепловой энергии, как правило, комбинируется с производством электроэнергии, то все сказанное об особенностях электроэнергетической системы применимо вообще к любой энергетической системе.