- •Г.Я. Пятибратов история развития и современные проблемы электроэнергетики и электротехники
- •140400 Электроэнергетика и электротехника
- •Оглавление
- •4.3. Задачи и проблемы дальнейшего повышения технического уровня современных 71
- •5. Проблемы и тенденции развития и практики электроэнергетики 76
- •Основные этапы развития электротехники и электроэнергетики
- •Историческая обусловленность возникновения
- •1.2. История становления электротехники
- •1.3. Основные этапы развития электромеханики
- •1.4. История возникновения электропривода
- •Зарождение и начальные этапы развития
- •1.6. Начало электрификации промышленности в России
- •1.7. Основные этапы развития электротехники
- •Значение электротехники и электроэнергетики для технического прогресса
- •Появление и развитие в россии системы высшего образования по электротехнике и электроэнергетике
- •2.1. История появления высшего технического образования в России
- •2.2. Возникновение системы подготовки специалистов по электротехнике и электроэнергетике
- •2.3. Подготовка специалистов по электротехнике и электроэнергетике в Новочеркасском политехническом вузе
- •Развитие теории электротехники и электромеханических систем
- •3.1. Становление теории электромеханических систем
- •3.2. Этапы развития теории электромеханических систем
- •3.3. Современные направления развития теории электромеханических систем
- •4. Проблемы и тенденции развития практики современных электротехнических систем
- •4.1. Задачи совершенствования электротехнических устройств и систем
- •4.2. Направления развития элементной базы электромеханических систем
- •4.2.1. Направления совершенствования механических преобразователей движения
- •4.2.2. Совершенствование конструкций электрических двигателей
- •4.2.3. Совершенствование полупроводниковых преобразователей
- •4.2.4. Развитие микропроцессорных средств управления
- •4.2.5. Совершенствование средств измерения в электротехнике и электроэнергетике
- •4.3. Задачи и проблемы дальнейшего повышения технического уровня современных электромеханических систем
- •Проблемы и тенденции развития и практики электроэнергетики
- •5.1. Общие закономерности развития теории
- •5.2. Взаимообусловленность развития теории
- •5.3. Основные этапы развития электроэнергетики России
- •5.3.1. Начало развития электроэнергетики России
- •5.3. 2. Послевоенное развитие электроэнергетики России
- •5.3.3. Особенности развития современной
- •5.4. Развитие электроэнергетических систем
- •5.4.1. Особенности развития электроэнергетических систем
- •5.4.2. Проблемы развития электроэнергетических систем и пути их решения
- •5.5. Развитие современных электрических сетей
- •Состояние и перспективы развития
- •Современное состояние электроэнергетики России
- •6.2. Задачи развития современной электроэнергетики России
- •6.3. Перспективы развития электроэнергетики России
- •Перспективы и направления развития
- •7.1. Возможности использования имеющихся энергоресурсов в XXI в.
- •7.2. Перспективы использования традиционных источников энергии
- •7.3. Перспективы развития энергетики, использующей возобновляемые источники энергии
- •7.4. Перспективы развития атомной энергетики
- •7.5. Перспективы использования термоядерной энергии
- •Заключение
- •Библиографический список
- •История развития и соременные проблемы электротехники
- •346428, Г. Новочеркасск, ул. Просвещения, 132
- •346428, Г. Новочеркасск, ул. Просвещения, 132
5.4. Развитие электроэнергетических систем
5.4.1. Особенности развития электроэнергетических систем
Современное электроснабжение промышленных, коммунальных и любых иных потребителей электроэнергии производится от тепловых и гидравлических электростанций, вырабатывающих электроэнергию. Электростанции могут находиться вблизи потребителей и, наоборот, могут быть удалены от них на значительные расстояния. И в том, и в другом случае передача электроэнергии от электростанции к потребителю осуществляется по электрическим линиям. Однако, когда потребители удалены от электростанции, передачу электроэнергии приходится осуществлять при повышенном напряжении. Тогда между электростанцией и потребителями необходимо сооружать повышающие и понижающие подстанции.
Часто источники энергии (бассейны топлива, водные бассейны) расположены на значительном расстоянии от крупных заводов, населенных пунктов и других центров потребления. Передача топлива может быть произведена по газопроводам и нефтепроводам, перевозка высококачественных углей — по железным дорогам. Передача тепловой энергии возможна по специальным трубопроводам. Но во многих случаях перевозка топлива, например угля, может быть нерентабельной; более выгодными оказываются сооружение электростанций вблизи бассейна топлива и передача электроэнергии по линиям сети. Это особенно существенно в условиях России, где большая часть наиболее экономичных топливно-энергетических ресурсов находится в азиатской части страны, а основная часть потребителей электроэнергии в настоящее время сосредоточена в центральной части, на юге, западе и Урале. В связи с этим возникает необходимость переброски на большие расстояния значительных потоков электроэнергии. Это требует строительства мощных линий электропередачи высокого напряжения.
В этом отношении исключение могут представлять лишь отдельные промышленные электростанции небольшой мощности либо теплоэлектроцентрали (ТЭЦ). Последние располагаются вблизи потребителей, так как передача пара и горячей воды может быть осуществлена на расстояние не более нескольких километров.
Электростанции при помощи электрических линий (через подстанции) связывают друг с другом для параллельной работы на общую нагрузку. Такая совокупность электростанций, подстанций и приемников электроэнергии, связанных между собой линиями электропередачи, образует энергетическую систему.
При этом получаются существенные технико-экономические преимущества:
1. Возможность увеличения единичной мощности генераторов и электростанции, что снижает стоимость 1 кВт установленной мощности и позволяет резко повысить производительность электромашиностроительных заводов при тех же производственных площадях и трудозатратах.
2. Значительное повышение надежности электроснабжения потребителей.
3. Повышение экономичности работы различных типов электростанций, при этом обеспечиваются наиболее эффективное использование мощности ГЭС и более экономичные режимы работы ТЭС;
4. Снижение необходимой резервной мощности на электростанциях.
Мощность электроэнергетических систем непрерывно возрастает. Из районных электроэнергетических систем создаются мощные объединенные энергосистемы.
Энергетическое производство, и в особенности производство электроэнергии, обладает рядом особенностей, резко отличающих энергетическое производство от других отраслей промышленности.
Первая и важнейшая особенность электроэнергетической системы заключается в том, что производство электроэнергии, ее распределение и преобразование в другие виды энергии осуществляются практически в один и тот же момент времени. При этом электроэнергия нигде не аккумулируется. Именно эта особенность превращает всю сложную электроэнергетическую систему, отдельные звенья которой могут быть географически удалены на многие сотни километров, в единый механизм и приводит к тому, что все элементы системы взаимно связаны и взаимодействуют. Энергия, произведенная в системе, должна быть равна энергии, потребленной в ней. Это равенство должно быть справедливо для любого короткого промежутка времени, поэтому между мощностями энергосистемы имеется точный баланс.
Таким образом, одновременность процессов производства, распределения и преобразования электроэнергии превращает электроэнергетическую систему в единое целое.
Вторая особенность электроэнергетической системы - это относительная быстрота протекания переходных процессов в ней. Волновые процессы совершаются в тысячные или даже миллионные доли секунды; процессы, связанные с короткими замыканиями, включениями и отключениями, качаниями, нарушениями устойчивости, совершаются в течение долей секунды или нескольких секунд.
Третья особенность электроэнергетической системы заключается в том, что она тесно связана со всеми отраслями промышленности, связью, транспортом и т. п. Эта связь осуществляется гигантской совокупностью разнообразнейших приемников электрической системы, получающей питание электроэнергией от современной энергетической системы. Эта особенность энергетической системы резко повышает актуальность обеспечения надежности работы энергосистемы и требует создания в энергетических системах достаточного резерва мощности во всех ее элементах. Все указанные выше проблемы особенно характерны для электроэнергетической системы, которая производит, распределяет и преобразует электроэнергию.
Если рассмотреть процессы производства, распределения и потребления тепловой энергии, то указанные выше особенности в известной мере будут иметь меньшее значение.
В тепловых установках имеется, хотя и очень небольшая, способность аккумуляции (паровые котлы, бойлеры, отопительные приборы и т. п.), имеются даже специальные тепловые аккумуляторы. Следовательно, процессы в отдельных звеньях тепловой энергетической системы (котлы, бойлеры, теплопередачи, приемники тепловой энергии) не так жестко взаимосвязаны, как в электроэнергетической системе. Так, например, прекращение подачи пара в бойлеры теплофикационных станций не вызовет мгновенного изменения режима работы отопительных приборов в тепловой сети. Все же аккумулирующая способность элементов теплоэнергетической системы невелика, и взаимосвязь отдельных элементов играет существенную роль.
Большинство переходных процессов совершается в тепловых системах значительно медленнее, чем в электрических, хотя гидравлические переходные процессы могут все же быть достаточно быстрыми.
Наконец, тепловая энергосистема имеет более ограниченную связь с отраслями народного хозяйства по сравнению с электрической системой.
Так как в современных энергетических системах производство тепловой энергии, как правило, комбинируется с производством электроэнергии, то все сказанное об особенностях электроэнергетической системы применимо вообще к любой энергетической системе.
