- •Передмова
- •1. Предмет органічної хімії
- •2. Електронна будова атому Карбону
- •2.1. Поняття про гібридизацію атомів Карбону.
- •3. Типи хімічних зв’язків в органічних сполуках
- •3.1. Характеристики ковалентного зв’язку
- •3.2. Електронні впливи (електронні ефекти в молекулах)
- •3.4. Типи утворення і види ковалентних зв’язків
- •4. Класифікація органічних сполук
- •5.1. Номенклатура і загальні принципи сучасної хімічної термінології
- •5.2. Ізомерія алканів та їх одновалентних залишків (алкілів)
- •5.3. Поняття про первинні, вторинні, третинні атоми Карбону
- •5.4. Правила номенклатури iupac
- •5.5. Методи добування алканів
- •5.6. Хімічні властивості алканів
- •5.7. Окремі представники
- •6. Алкени
- •6.1. Ізомерія алкенів
- •6.2. Номенклатура
- •6.3. Методи добування
- •6.4. Хімічні властивості
- •6.5. Просторова будова (стереохімія) алкенів (гомологів етену)
- •6.6. Окремі представники
- •7.1. Методи добування
- •7.2. Хімічні властивості
- •7.3. Окремі представники
- •8. Алкадієни
- •8.1. Ізомерія алкадієнів
- •8.2. Класифікація
- •8.3. Методи добування
- •8.4. Хімічні властивості
- •8.5. Окремі представники
- •9. Циклоалкани
- •9.1. Номенклатура. Ізомерія
- •9.2. Будова циклоалканів
- •9.3. Сучасні уявлення про будову малих циклів
- •9.4. Стереохімія циклоалканів
- •9.5. Окремі представники
- •10. Арени (Ароматичні вуглеводні)
- •10. 1. Класифікація ароматичних сполук
- •10.2. Ароматичні вуглеводні з одним бензеновим ядром
- •10.2.1. Будова молекули бензену
- •10.2.2. Гомологи бензену
- •10.2.3. Ізомерія та номенклатура.
- •10.2.4. Методи добування бензену та його гомологів.
- •10.2.5. Хімічні властивості
- •10.2.6. Окремі представники
- •10.3. Багатоядерні ароматичні вуглеводні
- •10.3.1. Багатоядерні ароматичні вуглеводні з неконденсованими бензеновими ядрами
- •1. Група дифенілу.
- •2. Дифенілметан.
- •3. Група трифенілметану.
- •10.3.2. Багатоядерні ароматичні сполуки з конденсованими ядрами
- •11. Галогеновуглеводні
- •11.1. Класифікація
- •11.2. Номенклатура
- •11.3. Ізомерія
- •11.3. Методи добування
- •11.4. Хімічні властивості
- •11.5. Окремі представники
- •12. Гідроксисполуки (спирти)
- •12.1. Класифікація
- •12.2. Номенклатура
- •12.3. Ізомерія
- •12.4. Фізичні властивості
- •12.5. Методи добування одноатомних спиртів
- •12.6. Хімічні властивості спиртів
- •12.7. Окремі представники
- •13. Багатоатомні спирти
- •13.1. Хімічні властивості
- •13.2. Окремі представники
- •14.Феноли
- •14.1. Номенклатура
- •14.2. Методи добування
- •14.3. Фізичні властивості
- •14.4. Хімічні властивості.
- •14.5. Окремі представники
- •15. Етери
- •15.6. Хімічні властивості
- •15.7. Окремі представники
- •16. Оксосполуки ( альдегіди і кетони)
- •16.1. Класифікація
- •16.2. Ізомерія
- •16.3. Номенклатура
- •16.4. Методи добування
- •16.5. Фізичні властивості
- •16.6. Хімічні властивості
- •16.7. Окремі представники
- •17. Карбонові кислоти
- •17.1. Одноосновні карбонові кислоти
- •17.1.1. Номенклатура
- •Назви деяких карбонових кислот
- •17.1.2. Ізомерія
- •17.1.3. Методи добування
- •17.1.4. Фізичні властивості
- •17.1.5. Хімічні властивості
- •17.1.6. Окремі представники
- •17.2. Дикарбонові кислоти
- •Назви деяких дикарбонових кислот
- •17.2.1. Методи добування
- •17.2.2. Фізичні властивості
- •17.2.3. Хімічні властивості
- •17.2.4. Окремі представники
- •17.3. Ненасичені монокарбонові кислоти
- •Назви деяких ненасичених монокарбонових кислот
- •18. Жири
- •18.1. Фізичні властивості
- •18.2. Методи добування
- •18.3. Хімічні властивості
- •18.4. Застосування жирів
- •19. Гідроксикарбонові кислоти. Гідроксикислоти
- •19.1. Ізомерія
- •19.2. Методи добування
- •19.3. Фізичні властивості
- •19.4. Хімічні властивості
- •20. Оптична ізомерія гідроксикислот
- •21. Вуглеводи
- •21.1. Класифікація вуглеводів
- •21.2. Моносахариди
- •21.2.1. Будова моносахаридів
- •21.2.2. Стереохімія моноз
- •21.2.3. Циклічна структура моносахаридів
- •21.2.4. Характер окисних кілець
- •21.2.5. Таутомерна рівновага моносахаридів. Явище мутаротації
- •21.2.6. Поняття про конформаційну ізомерію
- •21.2.7. Методи добування
- •21.2.8. Фізичні властивості
- •21.2.9. Хімічні властивості
- •21.2.10. Окремі представники
- •21.3. Полісахариди
- •21.3.1. Олігосахариди (сахароподібні полісахариди)
- •21.3.1.1. Дисахариди (біози)
- •21.3.1.2. Глікозил-глікози (відновлювальні дисахариди)
- •21.3.1.3. Глікозил-глікозиди, або невідновлювальні дисахариди
- •21.3.2. Вищі полісахариди (поліози, несахароподібні складні вуглеводи)
- •22. Нітрогеновмісні органічні сполуки
- •22.1. Нітросполуки жирного й ароматичного рядів
- •22.1.1. Класифікація
- •22.1.2. Номенклатура
- •22.1.3. Ізомерія
- •22.1.4. Методи добування
- •22.1.5. Фізичні властивості
- •22.1.6. Хімічні властивості нітросполук
- •22.1.7. Окремі представники
- •22.2.1. Класифікація
- •22.2.2. Номенклатура
- •22.2.3. Ізомерія
- •22.2.4. Методи добування
- •22.2.5. Фізичні властивості
- •22.2.6. Хімічні властивості
- •22.2.7. Окремі представники
- •22.3. Ароматичні діазо- та азосполуки
- •22.3.1. Номенклатура
- •22.3.2. Методи добування
- •22.3.3. Фізичні властивості
- •22.3.4. Хімічні властивості
- •22.4. Амінокислоти
- •22.4.1. Класифікація
- •22.4.2. Номенклатура
- •22.4.3. Ізомерія
- •22.4.4. Методи добування
- •22.4.5. Будова молекул
- •22.4.6. Фізичні властивості
- •22.4.7. Хімічні властивості
- •22.4.8. Окремі представники
- •22.5.1. Виділення з природних джерел і очищення
- •22.5.2. Фізичні і хімічні властивості
- •22.5.3. Рівні структурної організації молекули білка
- •Вторинна структура білкових молекул:
- •22.5.4. Класифікація білків
- •22.5.5. Ідентифікація білків
- •23. Гетероциклічні сполуки
- •23.3.2. П’ятичленні гетероцикли з декількома гетероатомами
- •23.4. Шестичленні гетероциклічні сполуки
- •23.4.1. Шестичленні гетероциклічні сполуки з одним гетероатомом та їх похідні
- •23.4.1.1. Поняття про алкалоїди
- •23.4.2. Шестичленні гетероциклічні сполуки з двома атомами Нітрогену
- •Література Основна
- •Додаткова
- •Органічна хімія Курс лекцій для студентів
11. Галогеновуглеводні
Галогенопохідними вуглеводнями називаються сполуки, в яких один або більше атомів Гідрогену заміщені атомом (атомами) галогену.
11.1. Класифікація
Залежно від будови вуглеводневого залишку розрізняють алкілгалогеніди та арилгалогеніди. Галогенопохідні мають загальну формулу R–X, де X — F, Cl, Br, I; a R — алкільний залишок, який може бути як ациклічним, так і циклічним; може містити подвійний зв’язок або бензенове кільце, наприклад:
.
Атом галогену може знаходитися біля первинного, вторинного або третинного атома Карбону. Тому розрізняють первинні, вторинні та третинні алкілгалогеніди, наприклад:
За кількістю атомів галогену в ланцюзі розрізняють моно-, ди- та поліалкілгалогеніди. Алкілдигалогеніди, в яких два атоми галогену сполучені з двома сусідніми атомами Карбону, називаються віцинальними дигалогеналканами; коли два атоми галогену сполучені з одним атомом Карбону – гемінальними. Наприклад:
.
11.2. Номенклатура
Існують три способи для назви галогеновуглеводнів. Прості алкілгалогеніди мають тривіальні назви, які складаються з назви вуглеводневого залишку алкілгалогеніду та назви галогену. Наприклад:
Згідно з правилами IUPAC галогеновуглеводні розглядають як продукти заміщення вуглеводнів; відповідні атоми галогенів указуються в префіксі. У разі потреби положення атома галогену позначають цифрою, наприклад:
11.3. Ізомерія
Галогеновуглеводням властива структурна ізомерія, зумовлена будовою (розгалуженням) вуглецевого ланцюга і положенням атома галогену в ланцюзі, наприклад:
.
Крім структурної в ряду галогеновуглеводнів має місце ще геометрична, або цис-транс-ізомерія, — це такий вид просторової ізомерії, коли ліганди по-різному розміщені в просторі відносно площини подвійного зв’язку:
.
11.3. Методи добування
1. В промисловості галогеновуглеводні добувають найчастіше прямим галогенуванням насичених вуглеводнів за високої температури, необхідної для перебігу вільнорадикальних реакцій, наприклад:
2. З синтетичних методів добування галогеновуглеводнів найбільше значення мають такі:
а) заміщення в молекулах спиртів гідроксильної групи на галоген у реакції з галогеноводнями, яка відбувається за схемою:
б) дією на спирти галогенідів фосфору або тіонілхлориду:
3. Приєднання галогеноводню до алкенів:
4. Бензилгалогеніди синтезують галогенуванням бічного відгалуження алкіларенів:
Арилгалогеніди добувають галогенуванням аренів або алкіларенів за кімнатної температури та наявності каталізаторів − галогенідів алюмінію або феруму (ІІІ):
11.4. Хімічні властивості
Алкілгалогеніди – одні з найбільш реакційноздатних органічних речовин. Більшість реакцій цих речовин відбувається з участю атома галогену, тому хімічні властивості алкілгалогенідів значною мірою визначаються поляризацією зв’язку C−Hal. Але атом галогену більш електронегативний, ніж атом Карбону, тому електронна пара зв’язку C→Hal значно зміщена до атома галогену. Внаслідок цього зв'язок поляризується і атом галогену має заряд δ‾, а атом Карбону – заряд δ+. Подібний вплив на розподіл електронів у σ-зв’язках відомий як індукційний ефект. Поляризація зв’язку C→Hal передається на сусідні
С–С і С–Н зв’язки і зумовлює полярність молекули. Тому для галогеновуглеводнів можливий гетероліз зв'язку С−Нal з відщепленням йона галогену. Це можуть бути реакції іонного нуклеофільного заміщення, в яких нуклеофіл (Nu) атакує атом Карбону і проходить заміна галогену на більш сильну основу або реакції елімінування, коли нуклеофіл атакує атом Гідрогену і відщеплює його, внаслідок чого утворюється подвійний зв'язок.
Реакція заміщення:
Реакція елімінування:
Природа галогену достатньо впливає на реакційну здатність галогеновуглеводнів, оскільки визначає поляризацію зв’язку С−Hal, яка зменшується в ряду R−I > R−Br > R−Cl > R−F.
1. Реакції нуклеофільного заміщення атомів галогену в галогеновуглеводнях.
2. Реакції елімінування ( відщеплення, дегідрогалогенування). При дії на галогеновуглеводні спиртового розчину лугу від них легко відщеплюються елементи галогеноводневої кислоти і утворюються ненасичені вуглеводні:
3. Реакції приєднання. При дії на галогеновуглеводні металів (Li, Zn, Mg) галоген заміщується на атом металу − найважливіший метод синтезу металоорганічних сполук. Особливо важливою є реакція галогеновуглеводнів з металічним магнієм, в результаті якої утворюються змішані магнійорганічні сполуки (реактив Гріньяра):
4. Реакції відновлення.
5. Реакції арилгалогенідів. На відміну від алкілгалогенідів арилгалогеніди важче вступають в реакції нуклеофільного заміщення. Проте, якщо ароматичне кільце містить, крім галогену, електроноакцепторні групи (нітрозо-, нітро-, ціано- або карбоксильну групу) в орто- або пара-положеннях до галогену, нуклеофільне заміщення відбувається швидше. Наприклад:
Менша рухливість галогену в арилгалогенідах пояснюється тим, що атом галогену в цих сполуках сполучений з sp2-гібридизованим атомом Карбону, який є електронегативнішим, ніж sp3-гібридизований атом Карбону насичених вуглеводнів. Внаслідок цього електронна пара зв’язку C−Hal притягнута до атома Карбону більше, ніж у зв’язках з участю sp3-гібридизованого атома Карбону.
Крім того, π-електрони подвійного зв’язку перешкоджають близькому підходу атакуючого нуклеофілу.
Меншу рухливість галогену в арилгалогенідах можна пояснити також +М-ефектом, який зменшує полярність зв’язку С−Hal і таким чином протидіє його гетеролізу:
Подібність у властивостях з арилгалогенідами виявляють вінілгалогеніди, які також не реакційноздатні за відношенням до нуклеофільного заміщення.
