- •Contents
- •Introduction
- •Unit 1 The Science of Geology
- •Different Areas of Geologic Study
- •Grammar focus The Noun in English
- •Discussion
- •Individual work
- •The Earth system
- •Energy for the Earth system
- •Test yourself
- •Unit 2 The Rock Cycle
- •The rock cycle
- •Grammar focus The Degrees of comparison of adjectives
- •Discussion
- •Lithosphere, mantle, layers, core, crust
- •Individual work
- •Earth’s Mantle
- •Earth’s Core
- •Test yourself
- •Unit 3 The Face of Earth
- •Grammar focus The Adverb in English
- •Discussion
- •Oceanic (mid-ocean) ridges, mountain belts, ocean basins, continental margins, continents, stable interior
- •Individual work
- •Test yourself
- •Unit 4 magma Part 1
- •Origin of Magma
- •Grammar focus Prepositions in English
- •Discussion
- •How Magmas Evolve
- •Individual work
- •Assimilation and Magma Mixing
- •Partial Melting and Magma Composition
- •Test yourself
- •Unit 5 magma Part 2
- •Intrusive Igneous Activity
- •Grammar focus The Present Indefinite and the Past Indefinite Tenses
- •Discussion
- •Massive Intrusive Bodies: Batholiths, Stocks, and Laccoliths
- •Individual work
- •Mineral Resources and Igneous Processes
- •Magmatic, igneous, vein deposits, metal-rich, hydrothermal solutions, disseminated deposit
- •Test yourself
- •Volcanic eruptions
- •The Nature of Volcanic Eruptions
- •Grammar focus The Past Indefinite Tense
- •Discussion
- •Why Do Volcanoes Erupt?
- •Individual work
- •Materials Extruded during an Eruption: lava
- •Test yourself
- •Volcanic structures and eruptive styles Part 1
- •Anatomy of a Volcano
- •Grammar focus The Present Indefinite versus the Future Indefinite tenses in complex sentences
- •Discussion
- •Types of volcanoes
- •1. Shield Volcanoes
- •2. Cinder Cones
- •3. Composite Cones
- •Individual work
- •Materials Extruded during an Eruption: gases and pyroclastic materials
- •Test yourself
- •Other Volcanic Landforms
- •Grammar focus The Continuous tenses
- •Discussion
- •Plate Tectonics and Volcanic Activity
- •Individual work
- •Test yourself
- •Weathering and Soil
- •Weathering
- •Grammar focus Perfect Tenses
- •Discussion
- •Mechanical Weathering
- •Individual work
- •Chemical Weathering
- •Test yourself
- •Internal processes, mass wasting, external processes, erosion, weathering
- •Grammar focus The Passive Voice (1)
- •Discussion
- •Controls of Soil Formation
- •Individual work
- •Soil Erosion
- •Test yourself
- •Sediment, type of vegetation, rock cycle, rate of soil, soil erosion
- •Unit 11 mineralogy Part 1
- •Grammar focus The Passive Voice (2)
- •Discussion
- •Characteristics of minerals
- •Individual work
- •Physical Properties of Minerals Optical Properties
- •Test yourself
- •Unit 12 mineralogy Part 2
- •Mineral Strength
- •Grammar focus
- •Indirect Speech
- •Discussion
- •Density and Specific Gravity
- •Individual work
- •Other Properties of Minerals
- •Test yourself
- •Unit 13 mineral groups
- •Grammar focus Modals in English
- •Discussion
- •Common silicate minerals
- •Individual work
- •Important nonsilicate minerals
- •Mineral resources
- •Test yourself
- •Unit 14
- •Igneous rocks Part 1
- •Magma: The Parent Material of Igneous Rock
- •The Nature of Magma
- •Grammar focus
- •Infinitive
- •Discussion
- •Igneous Processes
- •Igneous Compositions
- •Individual work
- •Other Compositional Groups
- •Test yourself
- •Unit 15
- •Igneous rocks Part 2
- •Igneous Textures: What Can They Tell Us?
- •Types of Igneous Textures
- •Grammar focus Gerund
- •Discussion
- •Felsic (Granitic) Igneous Rocks
- •Intermediate (Andesitic) Igneous Rocks
- •Individual work
- •Mafic (Basaltic) Igneous Rocks
- •Pyroclastic Rocks
- •Test yourself
- •Unit 16 metamorphism and metamorphic rocks
- •What Is Metamorphism?
- •Grammar focus Participle
- •Individual reading
- •Common Metamorphic Rocks Foliated Rocks
- •Nonfoliated Rocks
- •Test yourself
- •Sedimentary, pressure, mineralogical, metamorphism
- •Vocabulary
- •Glossary
- •List of reference books
Individual work
Task 1. Read the text and translate it into Ukrainian (in written form). Build up a list of key terms to the text.
Chemical Weathering
Chemical weathering involves the complex processes that break down rock components
and internal structures of minerals. Such processes convert the constituents to new minerals or release them to the surrounding environment. During this transformation, the original rock decomposes into substances that are stable in the surface environment. Consequently, the products of chemical weathering will remain essentially unchanged as long as they remain in an environment similar to the one in which they formed.
Water and Carbonic Acid. Water is by far the most important agent of chemical weathering. Although pure water is nonreactive, a small amount of dissolved material is generally all that is needed to activate it. Oxygen dissolved in water will oxidize some materials. When rocks containing iron-rich minerals oxidize, a yellow to reddish-brown rust will appear on the surface.
The weathering of potassium feldspar generates a residual clay mineral, a soluble salt (potassium bicarbonate), and some silica, which enters into solution. Quartz, the other main component of granite, is very resistant to chemical weathering; it remains substantially unaltered when attacked by weak acidic solutions. As a result, when granite weathers, the feldspar crystals dull and slowly turn to clay, releasing the once-interlocked quartz grains, which still retain their fresh, glassy appearance. Although some quartz remains in the soil, much is eventually transported to the sea or to other sites of deposition, where it becomes the main constituent of such features as sandy beaches and sand dunes. In time these quartz grains may become lithified to form the sedimentary rock sandstone.
Weathering of Silicate Minerals. Silicate minerals make up most of Earth’s crust and that these minerals are composed essentially of only eight elements. When chemically weathered, silicate minerals yield sodium, calcium, potassium, and magnesium ions that form soluble products, which may be removed by groundwater. The element iron combines with oxygen, producing relatively insoluble iron oxides, which give soil a reddish-brown or yellowish color. Under most conditions the three remaining elements— aluminum, silicon, and oxygen—join with water to produce residual clay minerals. However, even the highly insoluble clay minerals are very slowly removed by subsurface water.
Spheroidal Weathering. In addition to altering the internal structure of minerals, chemical weathering causes physical changes. For instance, when angular rock masses chemically weather as water enters along joints, they tend to take on a spherical shape. Gradually the corners and edges of the angular blocks become more rounded. The corners are attacked most readily because of their greater surface area, as compared to the edges and faces. This process, called spheroidal weathering, gives the weathered rock a more rounded or spherical shape.
Task 2. Answer the questions (in written form):
What products result when carbonic acid reacts with potassium feldspar?
What is spheroidal weathering?
Task 3. Read the text and translate it into Ukrainian (in written form).
D I D Y O U K N O W?
The moon has no atmosphere, no water, and no biological activity. Therefore, the weathering processes we are familiar with on Earth are lacking on the Moon. However, all lunar terrains are covered with a soil-like layer of gray debris, called lunar regolith, derived from a few billion years of bombardment by meteorites. The rate of change at the lunar surface is so slow that the footprints left by Apollo astronauts will likely remain fresh-looking for millions of years.
