Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Метод указ по Excel.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.6 Mб
Скачать

Лабораторная работа № 5

Числовые характеристики дискретной случайной величины.

Цель работы – научиться вычислять числовые характеристики дискретной случайной величины

Задачи работы – уметь находить математическое ожидание, дисперсию и среднее квадратическое отклонение с помощью пакета Excel.

Задание:

xi

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

N+8

N+9

N+10

pi

0,125

0,125

0,15

0,1

0,05

0,05

0,025

0,025

0,05

0,2

0,1

N – номер варианта.

Указания к выполнению лабораторной работы:

При выполнении задания использовать формулы вычисления числовых характеристик дискретной случайной величины , которые можно вычислить в пакете Excel, используя математические функции СУММПРОИЗВ и КОРЕНЬ.

Лабораторная работа № 6

Специальные законы распределения.

Цель работы – изучить свойства различных законов распределения случайных величин

Задачи работы – уметь находить значения параметров различных распределений, вычислять числовые характеристики для специальных законов распределений случайных величин с помощью функций Excel.

Задания:

  1. Построить многоугольник биномиального распределения для следующих параметров: n = N+10; p = 0,3; q = 0,7. Для данного биномиального закона вычислить все числовые характеристики.

  2. Среднее число инкассаторов, прибывающих утром на автомобиле в банк в 15 – минутный интервал, равно (N +2). Прибытие инкассаторов происходит случайно и независимо друг от друга.

  1. Составьте ряд распределения числа инкассаторов, прибывающих утром на автомобиле в банк в течение 15 минут.

  2. Найти числовые характеристики этого распределения.

  3. Определить вероятность того, что в течение 15 минут число прибывших инкассаторов окажется меньше N.

  1. Непрерывная случайная величина Х распределена по показательному закону, заданному при плотностью распределения ; при . Найти вероятность того, что в результате испытания Х попадет в интервал (0,5; 0,8).

N – номер варианта.

Указания к выполнению лабораторной работы:

При выполнении задания 1 использовать формулу Бернулли, которая представляется статистической функцией БИНОМРАСП (k, n, p, ЛОЖЬ). Числовые характеристики находить по формулам: . При выполнении задания 2 использовать формулу Пуассона, которая представляется статистической функцией ПУАССОН (k, λ, ЛОЖЬ), где k – количество появления события, λ – параметр Пуассона, ЛОЖЬ – указание на то, что определяется вероятность появления события ровно k раз. Числовые характеристики находить по формулам: . В задании 3 при вычислении вероятности того, что в результате испытания Х попадет в интервал (0,5; 0,8) удобно использовать формулу , где функция распределения задается при ; в Excel F(x) = ЭКСПРАСП(x; N; ИСТИНА), при