Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОЛУПР.DOC
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.42 Mб
Скачать

Примесная проводимость полупроводников

1. Донорная проводимость

Донорная проводимость возникает в полупроводниках, которые легированы примесью с валентностью, большей валентности собственных атомов. Например, в (валентность ) вводятся атомы или (валентность ).

а) Донорная проводимость с точки зрения кристаллической решетки

Рисунок 2.2а – Образование свободных носителей заряда с точки зрения кристаллической решетки

Рисунок 2.2б - С точки зрения зонной теории

Рисунок 2.2в - Зависимость от для донорного полупроводника

Рисунок 2.2 - Схема появления свободных электронов за счет доноров.

Пятый электрон атома не участвует в создании ковалентных связей и оказывается наиболее слабо связанным. Он легко отрывается за счет энергии теплового движения, становится свободным и способен создавать электронный ток при наличии электрического поля. Этот процесс аналогичен ионизации атома в газе. При таком образовании свободного электрона не наблюдается разрыв ковалентных связей и образование дырки. Атом примеси становится положительным ионом, но он по–прежнему прочно «сидит» в узле решетки (рисунок 2.2а). Такие примеси называют донорными, а полупроводник донорным, электронным или п–типа. Как правило, при комнатной температуре все доноры ионизированы и ( – концентрация доноров, обычно для ). Кроме того, происходит и процесс генерации пар электрон–дырка, но в таком полупроводнике электронов значительно больше, чем дырок: , а . Электроны в таком полупроводнике называются основными носителями заряда, дырки неосновными. При этом не нарушается электрическая нейтральность полупроводника.

б) С точки зрения зонной теории положение пятого электрона атома примеси на энергетической диаграмме изображают помещенным на примесном (донорном) уровне, расположенным в верхней половине запрещенной зоны, вблизи зоны проводимости.я соответствует энергии необходимой для отрыва электрона от атома (например для в эВ). Этому процессу соответствует переход электрона с донорного уровня в зону проводимости. Концентрация свободных электронов за счет донорной примеси и ее зависимость от температуры оценивается следующим выражением:

.

Вероятность появления электрона в зоне проводимости в донорном полупроводнике значительно больше вероятности образования дырки в валентной зоне, что отражается графиком распределения Ферми. Уровень Ферми в донорных полупроводниках лежит в верхней половине запрещенной зоны (рисунок 2.2б, 2.2в). По-прежнему возможны процессы рекомбинации, но при каждой температуре устанавливается равновесие.

Концентрация электронов в зоне проводимости определяется выражением:

.

Если обозначить концентрацию дырок в донорном полупроводнике, то справедливо соотношение . Отсюда можно определить концентрацию дырок в донорном полупроводнике

.

2. Акцепторная проводимость

Акцепторная проводимость наблюдается в полупроводниках, легированных примесью, с валентностью меньше валентности основного атома. Например, , , в .

а) Акцепторная проводимость с точки зрения кристаллической решетки. Одна связь около атома оказывается незаполненной. При электрон соседних атомов может перейти, заполнив эту связь (рисунок 2.3а).

В результате атом становится отрицательным ионом, «сидящим» в узле решетки, а около атома кремния, от которого «ушел» электрон образовалась дырка. Свободные электроны при этом не образуются. Энергия образования дырки мала (например, для в эВ; для в эВ).

Примесь, благодаря которой появляются дырки, называется акцепторной, а полупроводник акцепторным, дырочным или -типа.

Рисунок 2.3.а – Образование свободных носителей заряда с точки зрения кристаллической решетки

Рисунок 2.3б – С точки зрения зонной теории

Рисунок 2.3в – Зависимость от для акцепторного полупроводника

Рисунок 2.3: Схема образования дырки за счет акцепторной примеси.

Одновременно проходит термогенерация электронно–дырочных пар, но дырок больше и они являются основными носителями, а электроны неосновными.

б) С точки зрения зонной теории положение свободного места, на котором может быть захвачен электрон изображается акцепторным уровнем, расположенным в нижней половине запрещенной зоны (рисунок 2.3б). Расстояние между уровнем акцептора и потолком валентной зоны соответствует энергии образования дырки, т. е. электрон переходит из валентной зоны на примесный уровень. Концентрация дырок, появившихся за счет акцепторных примесей оценивается выражением:

,

где NА– концентрация акцепторов. В таких полупроводниках вероятность появления дырки в валентной зоне больше, чем вероятность появления электрона в зоне проводимости. Это отражено графиком функции Ферми и положением уровня Ферми (рисунок 2.3в).

Как правило, в реальных полупроводниках есть и донорные акцепторные примеси. Они компенсируют друг друга, и тип полупроводника определяется разностью концентраций примеси. Например, если , то полупроводник -типа и концентрация дырок определяется разностью . И наоборот.