- •Мета і завдання дисципліни. Базові Поняття Енергозбереження
- •1.2. Одиниці виміру та співідношення потужності та кількості енергії.
- •1.3. Суб’єкти та об’єкти енергозбереження.
- •1.1. Мета і завдання дисципліни
- •1.2. Одиниці виміру та співвідношення кількості та потужності енергії
- •1.3. Суб’єкти та об’єкти енергозбереження
- •1.4. Законодавство з енергозбереження.
- •У адміністративному примусі до реалізації робіт з енергозбереження;
- •У економічному заохоченні до реалізації робіт з енергозбереження;
- •1.5. Взаємозв’язок енергозбереження і енергетичного аудиту.
- •1.6. Взаємозвязок енергозбереження і енергоменеджменту.
- •Циклічність дій енергоменеджера представлена на рис. 1.1.
- •Енергетичний план виробничої діяльності енергоменеджера промислового підприємства представлений в табл. 1.1.
- •1.7. Логіка практичного використання знань з енергозбереження.
- •2.1. Загальні положення. Види енергозбереження.
- •2.2. Експлуатаційні параметри енергоносіїв та агрегатів об’єкту еа.
- •Слід запам’ятати, що назву “параметр” носять ознаки та властивості будь-якого явища, наприклад, теплопередачі, енергопостачання, характеристик енергоносіїв, тощо, що допускають кількісну оцінку.
- •2.3. Енергозбереження у теплотехнологічних процесах
- •2.4. Енергозбереження у агрегатах та установках
- •В подальшому, визначення обягів економії пер виконується в порядку, визначеному ф-лами (2.1 – 2.4), за формулами:
- •2.5. Енергозбереження у промислових підприємтсвах
- •2.6. Показники енергетичної ефективності об’єктів енергозбереження
- •2.6.1 Система ккд.
- •3.1. Структура собівартості продукції.
- •3.2. Енергетична складова собівартості продукції.
- •3.3. Собівартість електричної енергії.
- •Ціни на електроенергію для промислових і комунально побутових споживачів.
- •3.4. Собівартість теплової енергії.
- •Інформація: Ціна теплової енергії на енергоринку для споживачів теплової енергії у м. Києві у 2012 р була:
- •3.5. Співвідношення собівартості теплоти, одержаної з різних пер.
- •3.5.1. Визначення вартості Гкал теплоти через закупівлю органічного палива.
- •3.5.1. Визначення вартості Гкал теплоти через закупівлю електричної енергії і її ринкову вартість.
- •3.5.3. Висновок.
- •3.5.4. Співвідношення “паливної” та “електричної” вартості теплової енергії, відпущеної джерелами енергопостачання.
- •3.6. Вартість пари
- •4.1. Собівартість штучного холоду, одержаного від одноступеневої парокомпресорної холодильної установки (оху). Методологія.
- •4.1.1. Визначення енергетичної складової штучного холоду, одержаного від оху.
- •Годинний відпуск холоду становить:
- •4.1.2. Визначення повної собівартості штучного холоду, одержаного від оху.
- •4.1.3. Висновки по штучному холоду від оху.
- •4.2. Вартість штучного холоду та теплової енергії, одержаних від парокомпресійного теплового насосу (птн). Методологія.
- •4.2.1. Визначення енергетичної складової собівартості теплової енергії, одержаної від птн.
- •4.2.2. Визначення повної собівартості теплової енергії, одержаної від птн.
- •Для порівняння:
- •4.2.3. Висновки щодо теплової енергії від птн.
- •4.2.4 Визначення енергетичної складової собівартості штучного холоду, одержаного від птн.
- •4.2.5. Визначення повної собівартості штучного холоду від птн.
- •4.2.6. Висновки по штучному холоду від птн.
- •5.1. Технічні рішення з енергозбереження.
- •5.2. Витрати енергоресурсів
- •5.3. Втрати теплоти в технологічних процесах і установках
- •В практичній роботі з енергозбереження витрати пер на об’єкті представляються у відповідних розділах звіту по виконану роботу, як правило, або у вигляді таблиць або у вигляді гістограм.
- •5.4. Ефекти енергозбереження.
- •5.5 Техніко-економічне обґрунтування технічних рішень з енергозбереження
- •5.6. Види енергозбереження.
- •5.7. Методи енергозбереження
- •5.7.1 Стандартні методи енергозбереження:
- •5.7.2. Не стандартні методи енергозбереження: До нестандартих методів енергозбереження відносять нові ресурсо- та енергоощадні технології, а саме:
- •Теплова обробка бетону гарячими газами замість парової.
- •6.1. Основні визначення
- •6.2. Умови впровадження вер.
- •6.3. Напрями використання теплоти вер.
- •6.4. Технічні рішення з використання теплоти вер.
- •6.5. Умова ефективного використання теплоти вер.
- •6.6. Енергетичний ефект використання вер.
- •6.7. Економічний ефект використання вер.
- •План лекції
- •1.7. Загальні положення.
- •2.7. Етап 1. Вибір стратегії енергозбереження.
- •7.3. Етап 2. Визначення макро-показників енергоспоживання та показників енергетичної ефективності.
- •7.4. Етап 3. Визначення бази наближення об’єкту енергозбереження.
- •7.5. Етап 4. Формування та реалізація методики енергетичного (тепло-технологічного) розрахунку об’єкту енергозбереження.
- •7.6. Етап 5. Виявлення “вузлів” енергетичної недосконалості.
- •7.7. Етап 6. Формування повної системи енергоощадних технічних рішень.
- •7.8. Етап 7. Формування енергозберігаючих технічних рішень першочергового впровадження.
- •8.1. Етап 8. Визначення очікуваних макро-показників енергоспоживання та показників енергетичної ефективності об’єкту.
- •8.2. Етап 9. Визначення очікуваних обсягів зекономлених пер.
- •8.3. Етап 10. Визначення економічних показників енергозбереження.
- •8.4. Етап 11. Формування проміжного звіту.
- •8.5. Етап 12. Формування переліку необхідного енергоощадного обладнання.
- •8.6. Етап 13. Впровадження проектних рішень з енергозбереження.
- •8.7. Етап 14. Підтвердження результатів енергозбереження
- •8.8. Етап 15. Формування завершальної документації з енергозбереження.
- •Запитання для самоконтролю.
- •План лекції
- •9.1. Загальні положення.
- •9.2. Механічні процеси та методологія енергозбереження в їх реалізації.
- •9.2.1. Енергозбереження в процесі транспортування газових (газопарових) потоків компресорами.
- •9.2.2. Енергозбереження у процесі переміщення рідини відцентровими насосами
- •9.3. Тепло-технологічні процеси та методологія енергозбереження їх реалізації.
- •9.3.1. Енергозбереження в процесі нагрівння технологічного продукту.
- •Лекція 10. Енергозбереження ізолюванняМ тепловіддаючих поверхонь
- •10.1. Ізолювання, як фактор енергозбереження.
- •10.2. Закономірності втрат теплоти ізольованим трубопроводом від товщини ізоляційного шару.
- •10.3. Характеристики ізоляційних матеріалів
- •10.4. Втрати теплоти від ізольованих трубопроводів.
- •10.5. Розрахункові формули для визначення товщини ізоляційного шару для трубопроводів.
- •В результаті опрацювання вихідних даних і розрахунку за формулою 10.10 товщина ізоляційного шару – δізол для трубопроводу, зазначеного у вихідних даних, становить 0,051 м (51 мм).
- •10.6. Приклади.
- •10.7. Співставлення ізоляційних матеріалів.
- •Втрати теплоти та еквівалентні їм витрати вугілля в тец для ізоляційного матеріалу – Пінополіуретан-32
- •10.8. Визначення товщини ізоляційного шару для “холодних” трубопроводів.
- •План лекції
- •11.1. Загальні положення.
- •11.2. Енергозбереження в парогенераторі. Методологія реалізації.
- •11.3. Енергозбереження у випарних установках (ву) (на прикладі ву цукрового заводу).
- •11.4. Енергозбереження у теплових насосах.
- •11.4.1. Загальні положення.
- •11.4.2. Етапи енергозбереження в теплових насосах.
- •Запитання для самоперевірки.
- •План лекції
- •12.4. Енергозбереження у виробництві цукру.
- •12.1. Загальні положення. Цей розділ робіт з енергозбереження є масштабним і потребує значної бази знань і опанування методів розрахунку складних систем.
- •12.2. Енергозбереження у процесах вироблення теплової енергії в котельних.
- •12.3. Енергозбереження у процесах вироблення електроенергії в кес.
- •12.4. Енергозбереження у виробництві цукру.
- •Очікувані техніко-економічні показники 1-го етапу
- •Очікувані техніко-економічні показники 2-го етапу
- •13.1. Загальні положення
- •12.2. Етапи енергетичного аудиту
- •12.3. Методи енергетичного аудиту.
- •12.3.1. Метод збору вихідних даних.
- •12.3.2. Метод формування принципових схем споживання пер.
- •12.3.3. Метод виявлення вузлів енергетичної недосконалості (вен).
- •3.12.5. Метод порівняння технічних рішень та показників.
- •12.3.6. Метод інструментального виміру параметрів
- •12.3.7. Метод складання енергетичних, теплових, матеріальних балансів.
- •12.3.8. Метод визначення обсягу та степені використання теплоти вторинних енергоресурсів (вер)
- •12.3.9. Метод виявлення втрат теплової єнергії.
- •12.3.10. Метод визначення степені завантаження обладнання.
- •12.3.11. Метод “перехресної” перевірки параметрів енергоносіїв.
- •12.3.12. Метод термодинамічного аналізу.
- •12.3.13. Метод використання стандартних (ліцензованих) методик.
- •12.3.14. Метод використання наукових та навчальних методик.
- •12.3.18. Метод поетапного визначення результатів енергетичного аудиту.
- •12.3.19. Метод представлення результатів енергетичного аудиту.
- •14.1. Загальні положення
- •14.2. Інструментальні засоби виміру параметрів енергоносіїв.
- •14.3. Формули та діаграми для визначення експлуатаційних параметрів енергоносіїв.
- •14.4. Формули показників енергетичної ефективності.
- •14.4.1. Формули та графічні залежності для визначення ккд агрегатів.
- •14.4.3. Формули для визначення ккд енергетичних установок:
- •14.5.1.Методики розрахунку теплових схем промислових підприємств.
- •14.5.2. Методики розрахунку джерел енергопостачання.
- •14.5.3. Методики теплового розрахунку установок, що споживають теплову та електричну енергію.
- •14.6. Методики визначення показників енергетичної ефективності.
- •14.6.1. Методики визначення показників ефективності джерел енергопостачання.
- •14.6.2. Методики визначення показників енергетичної ефективності промислових підприємств.
- •14.7. Методики визначення економічних показників енергозбереження
- •14.8. Енергоощадне обладнання.
- •14.9. Енергоощадні технічні рішення.
- •14.10. Енерго та ресурноощадні технології.
- •14.12. Нормування енергоресурсів.
- •14.13. Енергоємність продукції.
- •14.13.1. Основні поняття енергоємності продукції.
- •14.13.2. Методологія визначення енергоємності продукції.
- •Лекція 15. КогенераціЯ і енергозбереження . План лекції
- •15.1. Когенерація. Загальні положення.
- •15.2. Енергетична та фінансова ефективність когенерації.
- •15.3. Передумови створення когенераційних установок на об’єктах енергоспоживання.
- •15.3.1. Технічні передумови створення когенераіційних установок.
- •15.3.2. Економічні передумови створення когенераіційних установок. Економічними передумови створення когенераіційних установок системі енергопостачання промислових підприємств є:
- •15.4. Когенераційні потенціали підприємства та енергоустановки.
- •15.4.1. Когенераційний потенціал промислового підприємства.
- •15.4.2. Когенераційний потенціал енергетичної установки.
- •15.4.3. Взаємовідповідність когенераційних потенціалів приємства та енергоустановки.
- •15.6. Розподіл витрати палива в когенераційних енергоустановках.
- •15.7. Показники енергетичної ефективності когенераційних установок
- •Рекомендована література: [13], [14], [26], [29].
- •Актуальні питання енергозбереження
- •16.1. Роль законодавства в енергозбереженні.
- •Енергетичний аудит:
- •Вторинні енергетичні ресурси:
- •Нетрадиційні та поновлювальні джерела енергії:
- •16.1.2. Створення правових підстав для економічного стимулювання ефективного використання пер.
- •16.2. Актуальні задачі енергозбереження.
- •16.2.1. За напрямом створення систем контролю та обліку.
- •16.2.2. За напрямом електрозбереження.
- •16.2.3. За напрямом теплозбереження.
- •16.2.4. За напрямом паливозбереження.
- •16.2.5. За напрямом інформаційно-методичне та законодавче забезпечення.
- •16.3. Енергозбереження у житлово-комунальному секторі.
- •16.4. Децентралізація теплопостачання у житлово-комунальному секторі.
- •16.6. Підсумковий аналіз дисципліни.
- •16.7. Контрольні запитання до екзамену
- •16.7.1. Види енергії, що споживає обладнання промислової теплоенергетики
- •16.7.2. Формули для визначення витрат пер
- •16.7.3. Структура втрат енергії
- •16.7.4. Структура витрат енергії
- •16.7.5. Вторинні енергоресурси
- •16.7.6. Етапи реалізації заходів з енергозбереження
- •16.7.7. Собівартість теплової, електричної енергії та штучного холоду
- •16.7.8. Макропоказники енергоспоживання та одиниці їх виміру
- •Список рекомендованої літератури
9.2.2. Енергозбереження у процесі переміщення рідини відцентровими насосами
Етап 1. Процес переміщення рідини відцентровими насосами є споживачем електричної енергії. Стратегія енергозбереження полягатиме у зменшенні як абсолютних – Wнасос, (кВт.год/год), так і питомих – wнасос, (кВт.год/т рідини), витрат електричної енергії.
В нашому конкретному випадку розрахункова формула для визначення годинної витрати електричної енергії на в насосній установці Wнасос, кВт.год/год, що входить до складу станції перекачування конденсату від цукрового заводу в ТЕЦ, (наприклад, для насосу СОТ-100) має наступний вигляд:
Wнасос = [Qнасос·Hнасос / (3600·ηнасос·η ел.прив)] · ρрід · ĝ · 10– 3 (9.6)
де:
Wнасос – годинна витрата електричної енергії (чисельно дорівнює електричній потужності), яку споживає насос, (кВт.год/год) або кВт.
Qнасос– фактична подача насосу, з урахуванням рециркуляції (у разі її наявності), м3/год;
Hнасос– напір, що розвиває насос, з урахуванням дроселювання (у разі його наявності) потоку у нагнітальному трубопроводі, м.вд.ст.;
ρрід – питома густина рідини, що перекачується, кг/м3;
ĝ – прискорення вільного падіння, дорівнює 9,8 м/с2;
ηнасос – ККД насосу, од. Визначається за паспортом насоса у відповідності до фактичної подачі насосу.
ηел.прив – ККД (електромеханічний) електропроиводу компресора, од. Визначається за паспортом електроприводу.
Реальними енергетичними параметрами, що впливають на зменшення витрати електричної енергії на переміщення рідини відцентровими насосами є:
Qнасос, потрібно його зменшення, технічні рішення відомі;
Ннасос, потрібно його зменшення, технічні рішення відомі;
ρрід, потрібно її зменшення, технічні рішення відомі;
ηнасос, потрібно його збільшення, технічні рішення відомі;
ηел.прив, потрібно його збільшення, технічні рішення відомі.
Етап 2. Макропоказником енергоспоживання процесу переміщення рідини насосами є годинна витрата теплоти, що визначається формулою (6.9)
Показником енергетичної ефективності процесу переміщення рідини насосами є питома витрата електроенергії на одну тонну рідини, що переміщується – wнасос, кВт.год/(кг/год), або кВт/кг:
wнасос = Wнасос / Gнасос (9.7)
де Gнасос – масова витрата паро газової суміші у компресорі, кг/год. Визначається за формулою: Gнасос = Qнасос· ρрід.
Етап 3. За базу порівняння визначаємо насосну установку аналогічного європейського підприємства такої ж виробничої потужності у якого витрата електроенергії і питома витрати електроенергії на переміщення конденсату від заводу в ТЕЦ – (Wнасос) Lim і (wнасос)Lim на 20 % менші.
Етап 4. Формування методики розрахунків не становить труднощів. Методика розрахунку обсягів споживання електричної енергії та її питомої витрати зводиться до використання формул (6.9) та (7.9).
Етап 5. Енергетичні недосконалості процесу перміщення конденсату від заводу в ТЕЦ визначаються шляхом порівняння фактичних експлуатаційних параметрів та параметрів на підприємстві – базі порівняння.
Енергетичними недосконалостями є:
завищена на 20 % подача насосу, внаслідок завищеної витрати технологічної пари на технологічні потреби заводу;
завищений напір насосу, внаслідок “завуженого” діаметру конденсатопроводу від заводу в ТЕЦ та наявності дросельного регулювання подачі насосу;
Таким чином, існуюча система станції транспортування конденсату налічує три вузли енергетичної недосконалості (ВЕН), що обумовлюють її енергозатратність.
Етап 6. Формуємо систему технічних рішень, що ліквідують всі три виявлені ВЕН, а саме:
потрібно зменшити на 20 % подачу насосу за рахунок виконання відповідних робіт у напряму зменшення паро споживання заводу;
потрібно зменшити на 10 % напір, який розвиває насос, за рахунок збільшення діаметру конденсатопроводу;
потрібно зменшити на 15 % напір, який розвиває насос, за рахунок застосування частотного регулювання подачі насосу;
Етап 7. Формуємо перелік пропозицій на перший (він же завершальний) етап робіт з енергозбереження, включивши в нього ліквідацію всіх трьох виявлених ВЕН.
Перелік пропозицій з енергозбереження включає в себе:
провести роботу зі зменшення на 20 % подачі насосу за рахунок виконання відповідних робіт у напряму зменшення пароспоживання заводу;
зменшити на 15 % напір, який розвиває насос, за рахунок збільшення діаметру конденсатопроводу;
зменшити на 15 % напір, який розвиває насос, за рахунок застосування частотного регулювання подачі насосу;
Етап 8. Експлуатаційними параметрами оновленої енергоощадної станції переміщення конденсату будуть:
зменшена подача насосу;
зменшений напір насосу.
Очікуваним результатом робіт з енергозбереження є зменшення витрати електричної енергії на перміщення конденсату, що визначено ф-лою (6.9) шляхом підстановки в неї змінених проектно-очікуваних (енергоощадних) параметрів, визначених на 6-му етапі.
Розрахунок засвідчує зменшення витрати теплової енергії – ΔWнасос на 10 % та зменшення питомої втрати теплової енергії – Δwнасос на 13 %.
Етап 9. Оскільки всі виявлені ВЕН були ліквідовані за один етап (тобто на 1-му етапі) то проектно-очікувані показники всії роботи будуть аналогічними, визначеним на 8-му етапі.
Етап 10. Економічним показником реалізованих робіт з енергозбереження буде зменшення витрат коштів на закупівлю електричної енергії на експлуатацію насосу СОТ-100 – ΔS, грн/міс (одиницю виміру часу потрібно узгодити із Замовником робіт). Відповідне визначення ΔS буде здійснено за формулами:
ΔS = S2 – S1, (9.8)
S1 = Q1 · Cq (9.9)
S2 = Q2 · Cе/еΣ (9.10)
де:
S1– витрата коштів на закупівлю електричної енергії на насос СОТ-100 до проведення робіт з енергозбереження, грн/міс;
S1– витрата коштів коштів на закупівлю електричної енергії на СОТ-100 після проведення робіт з енергозбереження, грн/міс;
Cе/е Σ– повна собівартість відпущеної від власної ТЕЦ електричної енергії для потреб цукрового заводу, грн/кВт.год.
Етапи 11 – 15 виконуються у разі наявності вимог Замовника щодо їх виконання і методологія їх виконання в лекційному матеріалі не наводиться.
