- •Вопрос 58.Теория Веймарна. Конденсационный метод получения коллоидных систем. Способы химической реакции и физической конденсации. Строение коллоидной частицы.
- •Вопрос 59.Дисперсионный метод получения коллоидных систем. Использование метода в фармации.
- •Вопрос 60. Методы очистки коллоидных систем. Диализ. Электродиализ. Ультрафильтрация.
- •Вопрос 61. Молекулярно- кинетические свойства коллоидных систем: броуновское движение, диффузия, осмотическое давление. Методы определения размеров коллоидных систем. Седиментационный анализ.
- •Вопрос 62. Оптические свойства коллоидных систем. Уравнение Релея. Ультрамикроскопия.
- •Вопрос 64. Методы определения дзета-потенциала: электрофорез, электроосмос. Электрофоретические методы в фармации.
- •Вопрос 65. Устойчивость коллоидных систем: кинетическая, агрегативная. Факторы, снижающие агрегативную устойчивость.
- •Вопрос 67. Особые явления при коагуляции: чередование зон коагуляции, явление привыкания, антагонизм и синергизм ионов.
- •Вопрос 68. Суспензии. Методы их получения. Устойчивость суспензий. Стабилизация суспензий различных типов. Применение суспензий в фармации. Седиментационный анализ.
- •Вопрос 69.Эмульсии: методы получения и свойства. Типы эмульсий. Стабилизация эмульсий. Обращение фаз эмульсий. Применение в фармации. Снижение устойчивости. Коалесценция.
- •Вопрос 70.Коллоидные поверхностно-активные вещества: мыла, детергенты, танниды, красители. Классификация: анионактивные, катионактивные, амфотерные, неионные мыла (привести примеры).
- •Вопрос 71.Мицеллообразование в растворах коллоидных пав. Типы мицелл. Способы определения ккм.
- •Вопрос 72. Солюбилизация прямая и обратная. Использование солюбилизации для получения линиментов. Моющее действие мыла.
- •Вопрос 73. Аэрозоли ,порошки ,пены. Получение, свойства, применение в фармации.
- •Вопрос 74. Понятие вмс ,применение в фармации. Характерные особенности вмс. Высокая молекулярная масса (Мм), цепеобразное строение, гибкость и эластичность.
- •Вопрос 75.Природа растворов вмс. Теория Каргина. Свойства растворов вмс общие с истинными растворами. Полиамфолиты. Изоэлектрическое состояние.
- •Вопрос 76.Вязкость растворов вмс. Причины аномальной вязкости полимеров. Структурная вязкость; факторы, влияющие на ее величину.
- •Вопрос 77.Методы измерения вязкости растворов вмс. Удельная, приведенная и характеристическая вязкость. Уравнение Штаудингера. Определение Мм полимера вискозиметрическим методом.
- •Вопрос 78. Осмотическое давление растворов вмс. Уравнение Галлера. Осмотический метод определения Мм полимера.
- •Вопрос 79.Явление коацервации: простая и комплексная, первичная и вторичная. Микрокапсулирование.
- •Вопрос 80. Защитное действие вмс. Стабилизация лекарственных средств высокомолекулярными соединениями.
- •Вопрос 81. Гели. Биологическое значение. Применение в фармации. Классификация гелей. Свойства гелей: тиксотропия, синерезис, диффузия, электропроводность.
- •Вопрос 82. Желатинирование. Факторы, влияющие на процесс желатинирования.
- •Вопрос 83. Набухание полимеров. Факторы, влияющие на набухание. Термодинамика набухания. Параметры набухания.
Вопрос 82. Желатинирование. Факторы, влияющие на процесс желатинирования.
Желатинирование- процесс гелеобразования в коллоидных системах и студнеобразование в растворах ВМС. Его можно представить как процесс образования пространственной сетчатой структуры с полной иммобилизацией жидкости. Внутреннюю структуру образуют удлиненные частицы, которые в результате теплового движения сближаются активными участками и образуют различные межмолекулярные связи. В водных растворах ВМС связи образуются между гидрофобными участками за счет Ван-дер-Ваальсовых сил.
Факторы, влияющие на желатинирование:
Форма макромолекул и их концентрация в растворе (с увеличением разветвленности макромолекул минимальная концентрация желатинирования уменьшается. Это связано с повышением количества активных участков, способных к взаимодействию друг с другом, что значительно ускоряет образование сетчатых структур и иммобилизацию жидкости)
Температура (понижение температуры увеличивает скорость желатинирования из-за снижения теплового броуновского движения т увеличения прочности образовавшихся межмолекулярных связей)
Электролиты (ускоряют- SO4, замедляют-NO3, I, Br)
Кислотность среды (при смещении Ph к изоэлектрической точке, желатинирование ускоряется).
Вопрос 83. Набухание полимеров. Факторы, влияющие на набухание. Термодинамика набухания. Параметры набухания.
В результате диффузии молекул жидкости в среду полимерного образца объем последнего резко увеличивается. Полимер набухает, поскольку начинают разрушаться слабые межмолекулярные образования. В предельном случае полимер растворяется в жидкости.
Процесс набухания характеризуется степенью набухания α:
|
|
|
где m - масса полимера после набухания, m0 - масса полимера до соприкосновения с жидкостью.
Степень набухания может достигать большой величины. Например, для каучука в бензоле степень набухания может достигать 1000 ÷ 1500 %.
Чем гибче цепи макромолекул, тем интенсивнее процесс набухания. Процесс сильно зависит от величины межмолекулярного взаимодействия полимера и жидкости и сопровождается тепловым эффектом.
В
зависимости от природы полимера и
растворителя набухание бывает ограниченное и
неограниченное.
Эти процесс аналогичны процессам
смешения низкомолекулярных веществ,
например, спирт и вода смешиваются
неограниченно, а фенол и вода - ограниченно.
На рис. 5.7 представлены зависимости
количества поглощенной жидкости (ω)
от времени (τ).
Видно, что кривые набухания 1 и 2
имеют предел, который называют пределом
набухания.
Величина предела набухания увеличивается
с ростом температуры (Т2 > Т1).
При увеличении температуры до Т3 (кривая
3) ограниченное набухание переходит в
неограниченное. Аналогичный вид имеют
и зависимости степени набухания от
времени.
Процесс набухания делится на две стадии: сольватацию и собственно набухание. Процесс набухания в воде называют гидратацией. На стадии сольватации происходит взаимодействие свободных активных групп полимера с молекулами низкомолекулярного растворителя. При этом энергия взаимодействия между молекулами полимера и жидкости должна быть больше энергии взаимодействия между молекулами полимера. Когда все активные группы полимера окажутся связанными с растворителем, наступает стадия чисто механического диффузионного проникновения растворителя в межцепное провстранство.
На
первой стадии происходит выделение
тепла, на второй - тепловой эффект
набухания равен нулю. Границу между
первой и второй стадиями устанавливают
по зависимостям теплового эффекта (
)
и работы набухания (A)
от количества поглощенной жидкости
(рис. 5.8). Здесь при определенной доле
абсорбированной жидкости (ω)
тепловой эффект становится равным
нулю, а работа набухания продолжает
монотонно уменьшаться. Заштрихованная
область на рисунке соответствует
собственно набуханию.
Энтропия на первой стадии процесса набухания аналогично процессу сорбции уменьшается (ΔS < 0), а на второй стадии увеличивается (ΔS > 0).
