- •Основы мореходной астрономии
- •Сокол Игорь Васильевич, Пятаков Эдуард Николаевич
- •Содержание
- •Глава I Основы сферической астрономии
- •§1.1. Основные направления и плоскости на земной поверхности
- •§1.2. Небесная сфера.
- •§1.3. Вертикалы и альмукантараты. Меридианы и параллели
- •§1.4. Системы сферических координат
- •Горизонтная система координат
- •Первая экваториальная система координат
- •Вторая экваториальная система координат
- •Связь между первой и второй экваториальными системами
- •§1.5. Графическое решение задач на небесной сфере
- •Графическое преобразование координат на небесной сфере
- •§1.6. Элементы сферической тригонометрии
- •§1.7. Параллактический треугольник. Преобразование координат
- •§1.8. Специальные таблицы для расчета высоты и азимута светил
- •§1.9. Точность вычисления счислимых высот и азимутов светил
- •Глава іі. Видимое суточное движение светил
- •§2.1. Видимое суточное движение светил. Явления, связанные с суточным движением светил
- •Восход и заход светил
- •Пересечение светилом первого вертикала
- •Прохождение светила через зенит
- •Элонгация светил
- •§2.2. Суточное движение светил в разных широтах
- •Наблюдатель находится на экваторе
- •Наблюдатель находится на полюсе
- •§2.3. Кульминация светил
- •§2.4. Изменение высоты и азимута светила при его суточном движении
- •§2.5. Годовое и суточное движение Солнца
- •§2.6. Собственное движение Луны
- •§2.7. Приливы
- •§2.8. Солнечные и лунные затмения Солнечные затмения
- •Лунные затмения
- •§2.9. Прецессия и нутация
- •Глава III Измерение времени
- •§3.1. Основы измерения времени
- •§3.2. Звездные сутки. Звездное время. Основная формула времени
- •§3.3. Истинные сутки. Истинное время. Средние сутки. Среднее время
- •§3.4. Местное время. Время на различных меридианах
- •§3.5. Поясное время
- •§3.6. Перевод поясного времени в среднее местное время и наоборот. Судовое время
- •§3.7. Демаркационная линия
- •§3.8. Служба времени на судне
- •§3.9. Календарь
- •Глава IV Морской астрономический ежегодник
- •§4.1. Назначение и устройство Морского астрономического ежегодника
- •Российский „Морской астрономический ежегодник”
- •Зарубежные Морские астрономические ежегодники
- •§4.2. Пользование Морским астрономическим ежегодником Определение местного часового угла и склонения звезды в заданный момент
- •Определение местного часового угла и склонения Солнца, планеты и Луны на заданный момент
- •Определение судового времени кульминации Солнца и Луны
- •Определение судового времени видимого восхода и захода Солнца и Луны в заданную дату в заданной точке
- •Определение судового времени начала утренних и конца вечерних гражданских или навигационных сумерек в заданную дату в заданной точке
- •Глава V Морские астрономические инструменты и работа с ними
- •§5.1. Хронометр Назначение и краткое описание морского хронометра
- •Поправка хронометра
- •Суточный ход хронометра
- •Обращение и уход за хронометром
- •§5.2. Звездный глобус
- •§5.3. Секстан Краткая теория и устройство навигационного секстана
- •Место нуля на лимбе
- •Поправка индекса и ее определение
- •Инструментальные погрешности секстана
- •§5.4. Выверка секстана в судовых условиях Проверка параллельности оптической оси трубы плоскости лимба
- •Проверка перпендикулярности большого зеркала к плоскости лимба
- •Проверка перпендикулярности малого зеркала к плоскости лимба
- •Уменьшение поправки индекса
- •§5.5. Измерение секстаном высот светил и углов между береговыми ориентирами
- •Измерение высот Солнца и луны
- •Измерение высот звезд и планет
- •Измерение углов между береговыми ориентирами
- •§5.6. Исправление измеренных высот светил
- •Земная рефракция. Наклонение видимого горизонта
- •Астрономическая рефракция
- •Параллаксы светил
- •П олудиаметры светила
- •Исправление высот светил, измеренных над линией видимого горизонта
- •Исправление высот светил, измеренных над береговой чертой
- •Исправление высот светил, измеренных в искусственный горизонт
- •§5.7. Приведение светил к одному моменту и зениту
- •Поправка высот к данному моменту
- •Приведение высот к одному зениту
- •Глава VI Определение места судна в море по небесным светилам
- •§6.1. Теоретические основы астрономического определения места судна в море
- •§6.2. Решение задачи определения места судна методом Сент-Иллера
- •§6.3. Нанесение высотных линий положения на меркаторскую карту прокладкой от счислимого места
- •§6.4. Точность обсервации
- •Оценка точности определения места судна средней квадратичной погрешностью
- •Влияние систематических постоянных погрешностей на точность определения места судна
- •Влияние на точность определения места судна погрешностей счисления
- •§6.5. Определение места судна в сумерки по одновременным наблюдениям двух светил
- •§6.6. Определение места судна в сумерки по одновременным наблюдениям трёх или четырёх светил
- •§6.7. Определение места судна по разновремённым наблюдениям Солнца
- •Глава VII Раздельное определение широты и долготы места судна в море
- •§7.1. Определение широты места судна в море по меридиональной высоте светила
- •§7.2. Определение широты места судна в море по высоте Полярной звезды
- •§7.3. Определение долготы места судна в море по небесным светилам
- •Глава VIII Частные методы совместного определения широты и долготы места судна в море
- •§8.1. Определение места по одновременным наблюдениям, двух светил, когда одно из них Полярная звезда
- •§8.2. Определение места по Солнцу, когда одна из высот меридиональная
- •§8.3. Определение места по одновременным наблюдениям, Солнца и Луны
- •§8.4. Определение места судна в тропиках по высотам Солнца, большим 88
- •Глава IX Определение поправки компаса по небесным светилам
- •§9.1. Определение поправки компаса по небесным светилам
- •§9.2. Частные случаи определения поправки компаса. Определение ∆k в момент видимого восхода или захода Солнца.
- •Определение ∆k по наблюдениям полярной звезды.
- •Литература
- •Основы мореходной астрономии
§5.3. Секстан Краткая теория и устройство навигационного секстана
Для решения полярного треугольника необходимо знать любые три его элемента. Одним из этих элементов является высота светила.
Для измерения высоты в береговых условиях применяется универсальный инструмент, устанавливаемый неподвижно на какое-либо основание. В условиях судна универсальный инструмент применить невозможно.
Наиболее удобным
типом морского угломерного инструмента
является секстан,
получивший свое название от размера
основной части инструмента – дуги
сектора равной
части полной окружности.
Секстан – переносной угломерный инструмент отражательного типа. К инструментам отражательного типа относятся приборы, в оптическую систему которых введены зеркала или призмы, служащие для отражения лучей идущих от наблюдаемых предметов.
Идея устройства
секстана впервые была высказана Исааком
Ньютоном в 1699 г., но его записки, содержащие
описание и чертеж октана, были опубликованы
лишь в 1742 г. В 1730-1731 гг. такой прибор был
сконструирован, независимо друг от
друга, Дж.Гадлеем (Англия) и Т.Годфреем
(США). Первые угломерные инструменты
имели дугу сектора, равную
части окружности, и назывались октанами
(«окто» по-гречески – восемь). Октан
позволял измерять углы до 90º. В дальнейшем
англичанин Рамсден усовершенствовал
октан, увеличив угломерную дугу с 45º до
60º.
Навигационный секстан служит для измерения:
Высоты небесных светил для определения места судна в море астрономическими методами.
Горизонтальных углов между видимыми с судна земными предметами для определения места судна по двум углам или углу и пеленгу.
Вертикальных углов для определения расстояния до предмета, высота которого известна.
Устройство и принцип действия секстана основаны на следующих законах оптики:
угол падения луча на плоское зеркало равен углу отражения.
Лучи падающий и отраженный находятся в одной плоскости с перпендикуляром к плоскости зеркала, восстановленным в точке падения луча.
Предположим,
что глазу наблюдателя, расположенному
в точке О
(рис. 5.4), предметы А
и В
представляются под углом АОВ = h.
Для измерения этого угла на пути луча
АО
устанавливают перпендикулярно к
плоскости чертежа большое зеркало сс1,
а на линии ВО
помещают малое зеркало dd1.
Луч света АС сначала падает на зеркало
сс1
в точку С
под углом
к нормали и после отражения под тем же
углом пойдет по направлению СD.
В точке D луч СD
встречает второе зеркало dd1
под углом
к нормали, отразившись от зеркала под
тем же углом луч пойдет по направлению
DO
и попадет в глаз наблюдателя. Таким
образом, глаз наблюдателя, помещенный
в точку О,
увидит предметы А
и В
по одному и тому же направлению ВО:
предмет А после двукратного отражения
от двух зеркал, а предмет В поверх малого
зеркала dd1.
Угол, между продолжениями плоскостей обоих зеркал, обозначают буквой .
Определим соотношение между углами h и .
Рассмотрим
треугольник COD,
в котором внешний угол CDB
равен сумме двух внутренних углов, не
смежных с ним
или
,
откуда
.
Из треугольника CDF имеем
или
,
откуда
.
Сопоставляя формулы для h и , получаем
.
Таким образом, измеряемый угол между предметами h равен удвоенному углу между зеркалами . Следовательно, измерение угла h сводится к измерению угла , когда прямовидимое и дважды отраженное изображения предметов находятся в совмещении. В этом и состоит краткая теория угломерного инструмента, которая лежит в основе устройства секстана.
Принцип измерения угла показан на рис 5.5. Малое зеркало укрепляется на раме секстана неподвижно, а большое зеркало устанавливается на алидаде, ось вращения которой совпадает с центром делений лимба. Для повышения точности совмещения изображений предметов А и В на раме секстана устанавливается зрительная труба, оптическая ось которой параллельна плоскости лимба.
Проведем через центр вращения алидады прямую СМ0 параллельно плоскости малого зеркала. Эта прямая представляет начальное положение алидады, при котором DFC = МСМ0 = . Измерение угла между зеркалами производится при помощи лимба, на верхней плоскости которого нанесены градусные деления.
Чтобы измерить угол между предметами А и В, необходимо плоскость лимба расположить в плоскости измеряемого угла АОВ. Направив трубу секстана на прямовидимый объект В, перемещают алидаду в сторону увеличения отсчетов до тех пор, пока в поле зрения трубы не появится дважды отраженное изображение предмета А. Затем добиваются точного совмещения дважды отраженного предмета А с прямовидимым В. При этом алидада займет положение СМ, а дуга ММ0 даст величину угла наклона большого зеркала , удвоив который, получают угол h между предметами А и В. Чтобы каждый раз не удваивать угол , при оцифровке делений лимба каждое полуградусное деление принимают за градусное. Поэтому отсчет М по лимбу сразу дает величину измеряемого угла .
