Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
konspect_STEGO - rus (1).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
8.67 Mб
Скачать
  1. Стеганолгоритмы, устойчивые к сжатию

Стеганографический метод, использующий формализацию стеганопреобразования в виде совокупности возмущений сингулярных чисел. На основе полученных теоретических выводов предлагается следующий стеганографический метод. В качестве ДИ рассматривается последовательность , где . Декодированную ДИ будем обозначать: , где .

Погружение ДИ.

Шаг 1. Матрица контейнера разбивается стандартным образом на блоки размером . Такое разбиение выбрано в силу того, что оно является стандартным при организации сжатия. Каждый блок контейнера используется для погружения ( ) бит ДИ.

Шаг 2. (Погружение ДИ в очередной блок контейнера). Пусть — очередной блок, используемый для стеганопреобразования, а ,..., — очередные биты ДИ.

2.1. Каким-либо алгоритмом определяются СНЧ блока , ;

2.2. В зависимости от следующих условий

  • требуемого значения скрытой пропускной способности организуемого канала связи,

  • соотношения между значениями для конкретного блока ,

  • значений ,..., – погружаемых в бит ДИ

погружение дополнительной информации производится за счет взаимной корректировки значений . Количество различных вариантов корректировки определяется количеством различных вариантов упорядоченных бинарных последовательностей ,..., : ; - возмущенные после СП значения соответственно.

Шаг 3. (Формирование блока СС с матрицей ). Соответствующий блок СС формируется с учетом возмущенных СНЧ : сингулярные числа — это , .

Декодирование ДИ.

Шаг 1. Матрица стеганосообщения разбивается стандартным образом на блоки размером . Каждый блок используется для декодирования ,..., — значений бит ДИ.

Шаг 2. (Декодирование ДИ из очередного блока СС). Пусть — очередной блок, из которого извлекаются биты ,..., ДИ.

2.1. Определяются СНЧ блока .

2.2. Определяется связь между значениями , в соответствии с которой целиком декодируется бинарная последовательность ,...,

Конкретный способ реализации шагов 2 при погружении и декодировании ДИ будет определять конкретный стеганоалгоритм, один из вариантов которого предлагается в следующем подразделе.

Стеганоалгоритм, основанный на возмущении максимальных сингулярных чисел блоков контейнера. Рассмотрим конкретную реализацию предложенного выше стеганометода в виде стеганоалгоритма.

В качестве ОС может выступать как цветное ЦИ, так и изображение в градациях серого. Для цветного ЦИ погружение ДИ будет производиться в матрицы , , .

Обозначим через , где - множество натуральных чисел, пороговое значение вариации возмущений максимальных СНЧ, смысл которого будет объяснен ниже. Основные шаги предлагаемого стеганоалгоритма, обозначаемого далее , выглядят следующим образом.

Погружение ДИ.

Шаг 1. Матрица контейнера разбивается стандартным образом на блоки размером . Каждый блок используется для погружения 1 бита ДИ ( ).

Шаг 2. (Погружение бита ДИ). Пусть — очередной блок, используемый для СП, а — очередной бит ДИ.

2.2. Строится сингулярное разложение , где ;

2.3. Если

то

корректируется так, чтобы целая часть разности между при делении на давала остаток . Результат корректировки – возмущенное максимальное СНЧ ;

иначе

корректируется так, чтобы целая часть разности между при делении на давала остаток . Результат — .

Шаг 3. (Формирование блока СС ). Соответствующий блок СС вычисляется как:

,

где .

Декодирование ДИ.

Шаг 1. Матрица стеганосообщения разбивается стандартным образом на блоки размером . Каждый блок используется для декодирования 1 бита ДИ.

Шаг 2. (Декодирование бита ДИ). Пусть — очередной блок, из которого извлекается бит ДИ.

2.2. Строится сингулярное разложение , где ;

2.3. Если

целая часть разности между при делении на дает остаток меньше

то

;

иначе

.

Замечание. Необходимо отметить, что сингулярное разложение на шагах 2.2 погружения и декодирования ДИ не обязано быть нормальным. Нормальность сингулярного разложения обеспечивает его единственность, в то время, как обычное сингулярное разложение определяется неединственным образом за счет неединственности сингулярных векторов. Однако сингулярные числа для и , которые и используются в алгоритме , определяются однозначно в каждом из упомянутых сингулярных разложений.

Рассмотрим подробно пороговое значение вариации возмущений максимальных СНЧ . Исходя из приведенных выше результатов, значительную устойчивость предложенного алгоритма можно было бы ожидать в случае . Тогда остатки от деления , например, для , могут принимать значения из множества . При погружении СНЧ очередного блока становится таким, что остаток от деления на равен 75, для упомянутый остаток будет равен 225 (рис.9.1). Исходя из возможного максимального возмущения при сжатии с ( ) и конкретики алгоритма декодирования ДИ, сжатие с с большой вероятностью не сможет вывести значение СНЧ за пределы «зоны», отвечающей погруженному биту дополнительной информации (рис.9.1).

Рис.9.1. Иллюстрация процессов погружения и декодирования дополнительной информации при

Однако, как показал вычислительный эксперимент, значение , используемое в процессе стеганопреобразования, не всегда обеспечивало надежность восприятия стеганосообщения, которая устанавливалась путем субъективного ранжирования. Заметим, что хотя максимальное значение возмущения блока рассматривалось как , полученное для , не имеет смысла выяснять максимальное значение для : очевидно, что в этих случаях , однако увеличение значения в силу вышесказанного не представляется возможным.

Уменьшение до 250 не обеспечило надежность восприятия стеганосообщения. В вычислительном эксперименте, проводимом в среде MATLAB для более, чем 400 ЦИ-контейнеров, хранимых как в формате с потерями (JPEG), так и в формате без потерь (TIF), было установлено, что приемлемым является значение . В этом случае нарушение надежности восприятия, устанавливаемое путем субъективного ранжирования, отмечено не было. Сформированные стеганосообщения первоначально сохранялись в формате без потерь, а затем пересохранялись в формат JPEG с различными коэффициентами качества, после чего происходило декодирование дополнительной информации.

Результаты экспериментов приведены в таблице 9.1. Пусть , , — декодированная из стеганосообщения ДИ. Эффективность работы стеганоалгоритма оценивается по значению коэффициента корреляции ( ), определяемого следующим образом:

,

где , если , и , если . Таким образом, значение .

Таблица 9.1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]