- •Семестровый модуль 1. Содержательный модуль 1. Принципы построения цифрового изображения и методы его улучшения
- •Элементы зрительного восприятия человека
- •Цифровое изображение
- •Пространственные методы улучшения изображения. Некоторые градационные преобразования. Гистограмма изображения. Основы пространственной фильтрации
- •Преобразование Фурье
- •Основы фильтрации в частотной области
- •Модели шума
- •Геометрические преобразования
- •Вопросы
- •Литература
- •Введение
- •Возможные способы сжатия ци
- •Соответствие между параметрами двумерного сигнала в пространственной и частотной областях
- •Jpeg-сжатие цифрового изображения
- •Вопросы
- •Литература
- •Содержательный модуль 2. Общие понятия и принципы стеганографии
- •Введение
- •Цифровая стеганография. Предмет, терминология, области применения
- •Структурная схема стеганосистемы
- •Классификация стеганосистем
- •Требования, выдвигаемые при проектировании стеганосистемы
- •Некоторые практические вопросы встраивания данных
- •Вопросы
- •Литература
- •Атаки на стеганосистемы
- •Пропускная способность каналов передачи скрываемой информации
- •Стойкость стеганосистемы
- •Вопросы
- •Литература
- •Содержательный модуль 3. Общие требования к стеганографическим методам и алгоритмам и принципы их достижения
- •1. Понятие чувствительности стеганосообщения
- •2. Стеганопреобразование как возмущение матрицы контейнера
- •3. Стеганографический метод, использующий спектральное разложение матрицы контейнера
- •4. Связь стеганопреобразования и возмущений спектра и собственных векторов матрицы контейнера
- •Вопросы
- •Литература
- •1. Оценка свойств и сравнение стеганографических методов
- •2. Примеры использования нового метода
- •Вопросы
- •Литература
- •Способ пересылки и декодирования дополнительной информации
- •Условие устойчивости метода systema
- •Способ обеспечения малого числа обусловленности Скила матрицы произвольного изображения
- •Практическая реализация метода systema
- •Вопросы
- •Литература
- •Введение
- •Анализ возмущений сингулярных спектров цифровых изображений при различных возмущающих воздействиях
- •3. Анализ возмущений сингулярных векторов матриц (блоков матриц) цифровых изображений при разных возмущающих воздействиях
- •Среднее значение по tif-изображению при сжатии с различным коэффициентом качества
- •Среднее значение по tif-изображению при сжатии с различным коэффициентом качества
- •Вопросы
- •Литература
- •Использование особенностей возмущений сингулярных чисел матрицы цифрового изображения при организации стеганографического канала связи
- •Стеганолгоритмы, устойчивые к сжатию
- •Зависимость от значения коэффициента качества в стеганоалгоритме
- •Результаты декодирования ди стеганоалгоритмом
- •Значение при различных форматах стеганосообщения
- •Зависимость от значения коэффициента качества , используемого при атаке сжатием на сс, при различных способах определения диагональных элементов блока сс в алгоритме
- •Вопросы
- •Литература
Использование особенностей возмущений сингулярных чисел матрицы цифрового изображения при организации стеганографического канала связи
Учитывая, что, как уже отмечалось раньше, подходящей моделью для ошибок квантования, возмущающих воздействий при пересылке в канале связи и (или) атак на СС является аддитивный гауссовский шум, при котором наличие МЗСНЧ является практически обязательным, становится очевидным еще одно достаточное условие для обеспечения нечувствительности стеганосообщения к возмущающим воздействиям:
Утверждение. Для того, чтобы используемый при организации стеганографического канала связи стеганометод был устойчивым к возмущающим воздействиям, т.е. генерируемое им СС было нечувствительным, достаточно, чтобы погружение секретной информации можно было формально представить в виде возмущений СНЧ матрицы контейнера, принадлежащих МЗСНЧ.
Таким образом, в качестве области для погружения секретной информации достаточно использовать часть полного набора параметров, определяющих контейнер (некоторые подобласти контейнера), степень нечувствительности которых к возмущающим воздействиям максимальна – СНЧ матрицы контейнера, принадлежащие МЗСНЧ.
Основные шаги метода погружения секретной информации в контейнер выглядят следующим образом:
Шаг 1. Матрица контейнера разбивается на подобласти, количество которых выбирается с учетом длины погружаемого секретного сообщения, при этом количество и непосредственный способ разбиения может использоваться в качестве секретного ключа. Для каждой подобласти вычисляются СНЧ.
Шаг 2. На матрицу контейнера накладывается шум (аддитивный гауссовский шум).
Шаг 3. Возмущенная наложенным шумом матрица разбивается аналогичным шагу 1 образом на подобласти. Для каждой подобласти вычисляются СНЧ.
Шаг 4 (локализация области контейнера для погружения секретной информации). Для каждой из подобластей контейнера определяются СНЧ, входящие в МЗСНЧ этой подобласти (это можно сделать, либо определяя окрестность точки персечения интерполяционных сплайнов сингулярных спектров исходной и возмущенной подобласти, либо определяя область нулевых (сравнимых с нулем) возмущений СНЧ после наложения шума).
Шаг 5 (погружение секретной информации). Погружение секретной информации производится таким образом, чтобы при стеганопреобразовании возмущению подверглись только СНЧ выделенных подобластей контейнера, входящие в МЗСНЧ, а остальные элементы полных наборов параметров, определяющих подобласти, остались без изменения.
Для извлечения секретной информации шаги 1-4 предпринимаются для матрицы стеганосообщения, результатом чего на шаге 4 будет локализация области стеганосообщения, которая была использована для погружения. На шаге 5 извлечение информации происходит из СНЧ, находящихся в определенной на предыдущих шагах МЗСНЧ с учетом алгоритма, использованного для погружения.
Для
аппробации одной из конкретных реализаций
предложенного метода в среде Matlab
был проведен очередной этап вычислительного
эксперимента, где использовались в
качестве контейнеров 200 изображений.
Секретное сообщение генерировалось
случайным образом в виде бинарной
последовательности. Погружение на шаге
5 осуществлялось аддитивно непосредственно
в СНЧ из МЗСНЧ. С учетом того, что МЗСНЧ
локализуется в верхней части сингулярного
спектра, бинарное секретное сообщение
кодировалось в алфавите
,
что уменьшило количество погружаемых
элементов сообщения в 6 раз.
Эффективность декодирования, определяемая как
для различных изображений составила от 80% до 98%, а в среднем – 94.7%.
Проведенный в работе анализ характера возмущений СНЧ матриц, отвечающих изображениям, при различных возмущающих воздействиях дал возможность для получения достаточного условия обеспечения нечувствительности стеганосообщения и может использоваться как теоретический базис для созданий устойчивых стеганографических алгоритмов, что подтверждается приведенными результатами вычислительного эксперимента.
