- •Engineering
- •I. Words and expressions for the text comprehension:
- •II. Read and translate the following international words:
- •III. Read and translate the text: engineering
- •Electrical and electronics engineering
- •I. Answer the following questions:
- •II. Give Ukrainian equivalents of the following:
- •IV. Fill in the gaps with words given below: Practical application, reduce, mechanical devices, environmental consequences, point of view.
- •V. Read and translate the following dialogue
- •Grammar in Use
- •II. Translate the following sentences into Ukrainian. The suffix -ing can be used for the formation of both the Participle I and the noun.
- •III. Open the brackets and use the correct form of Participle I.
- •The engineering profession
- •I. Practice connected reading. Translate the following word-combinations.
- •III. Read and translate the text: the engineering profession
- •IV. Tell what sentences are true and what are false.
- •V. Complete the sentences.
- •VII. Arrange the following words in pairs according to:
- •VIII. Make up as many questions as possible on the basis of the following sentences.
- •IX. Answer the following questions on the text.
- •X. Study the list of the following activities. Tick the statements which refer to you
- •XI. Number the lines of the dialogue in the correct order. Then try to reproduce it
- •XII. Themes for the presentation. You can do it in groups, in pairs or individually.
- •Electrical engineering my future speciality is electrical engineer.
- •Words and expressions for the text comprehension:
- •II. Read and give Ukrainian equivalents of the following internationalisms:
- •III. Read and translate the text: my future speciality
- •I. Translate into Ukrainian and state the part of speech of the following words:
- •Arrange the following words in pairs according to:
- •Give Ukrainian equivalents of the following:
- •Give English equivalents of the following:
- •V. Complete the following sentences using the words given below: Degrees, include, to transmit, vary, mixture, the length, concerned.
- •VI. Answer the following questions:
- •VII. Themes for the presentation. You can do it in groups, in pairs or individually.
- •Electrical engineer. Job description
- •Typical work activities
- •Electrical engineer
- •Training, other qualifications and advancement
- •Education and training
- •Grammar in Use
- •I. Open the brackets and use the correct form of Participle II.
- •II. Form Participle II from the following verbs and translate them into Ukrainian:
- •III. Read and translate the following word-combinations paying attention to the Participle II.
- •IV. Translate into Ukrainian the following sentences paying attention to the Participle II.
- •V. Define the functions of the Participle II and translate the sentences into Ukrainian.
- •Electricity and energy
- •II. Form different parts of speech by adding to the words the affixes, given below, and translate them:
- •III. Read and translate the text: electricity and energy
- •Forms of energy
- •I. Give Ukrainian equivalents of the following:
- •II. Give English equivalents of the following:
- •III. Fill in the gaps with the words given below: a combination, increase, electromagnetic radiation, nuclear fusion, vicinity.
- •IV. Arrange the following words in pairs according to similar meaning and translate them:
- •VI. Themes for the presentation. You can do it in groups, in pairs or individually.
- •Electric current
- •I. Words and expressions for the text comprehension:
- •II. Translate the following adjectives and past participles with the negative prefix –un and define the root of the word:
- •III. Read and translate the following text: electric current
- •I. Answer the questions:
- •II. Give English equivalents of the followings:
- •III. Give English equivalents of the followings:
- •IV. Tell what sentences are true and what are false:
- •Fill in the gaps with the words given below: An ammeter, ohm, one direction, the greater, is proved by, be measured by, in a wire.
- •Electric field
- •Electric potential
- •Electric power
- •I. Answer the following questions:
- •II. Arrange the following synonyms into pairs:
- •III. Arrange the following antonyms into pairs:
- •IV. Fill in the gaps with the words given below: Uneconomic, no, transmission lines, negatively, conductor, positively, sources.
- •V. Translate into Ukrainian.
- •Electronics
- •Applications
- •VI. Themes for the presentation. You can do it in groups, in pairs or individually.
- •Grammar in Use
- •I. Translate the sentences into Ukrainian. Pay attention to the functions of the Infinitives.
- •III. Change the sentences according to the examples.
- •IV. Translate the following sentences and define the infinitive constructions.
- •V. Define the function of the Infinitive in the following sentences by putting questions to each of them.
- •Electric power transmission
- •Transmission of Electric Power
- •Transmission efficiency and transmission losses
- •Substation
- •Transmission towers
- •Transmission lines
- •Grammar in Use
- •I. Fill in the blanks with proper gerunds (use the verbs given below):
- •II. Complete the following sentences using gerunds and translate the sentences:
- •III. Find Gerund in the following sentences. Translate the sentences.
- •IV. Define the forms and functions of Gerund.
- •V. Translate the sentences into Ukrainian, mind the Gerunds:
- •Electrical apparatus
- •Electric, electrical, electronic
- •Grammar in Use
- •I. Explain what the modal verbs denote in the following sentences. Translate the sentences.
- •II. Translate the following sentences into Ukrainian paying attention to the Modal Verbs.
- •III. Translate the following sentences paying attention to the Modal Verbs and their equivalents:
- •IV. Explain the use of modal verbs with different Infinitive forms and translate the sentences.
- •Power station (plants)
- •Thermal power stations
- •Cooling tower
- •Hydroelectricity
- •Pumped-storage hydroelectricity
- •Solar power
- •Wind power
- •Marine energy
- •Osmotic power
- •Biomass power
- •Grammar in Use
- •VII. Open the brackets and put the verbs in correct form.
- •VIII. Complete the sentences.
- •Electrical power tranamission system and network
- •Transmission of Electrical Energy
- •There are some advantages in using dc transmission system:
Engineering
I. Words and expressions for the text comprehension:
applied sciences – прикладні науки
natural sciences – природничі науки
gained – набутий
marine engineer – морський інженер
stationary engineer– стаціонарний інженер
craft – ремеслo
draftsman – кресляр
electronic circuits – електронні схеми
superconductors – надпровідники
solidstate electronics – твердотільна електроніка
fiber optics – волоконна оптика
be concerned with – мати справу з
II. Read and translate the following international words:
Canal, material, mechanism, signal, locomotive, laser, revolution, method, optics, radar, radiation, ventilation.
III. Read and translate the text: engineering
Engineering,
term applied to the profession in which a knowledge of the
mathematical and natural sciences, gained by study, experience, and
practice, is applied to the efficient use of the materials and forces
of nature.
The term engineer properly denotes a person who has received professional training in pure and applied science, but is often loosely used to describe the operator of an engine, as in the terms locomotive engineer, marine engineer, or stationary engineer. In modern terminology these latter occupations are known as crafts or trades. Between the professional engineer and the craftsperson or tradesperson, however, are those individuals known as subprofessionals or paraprofessionals, who apply scientific and engineering skills to technical problems; typical of these are engineering aides, technicians, inspectors, draftsmen, and the like.
Electrical and electronics engineering
The largest and most diverse field of engineering, it is concerned with the development and design, application, and manufacture of systems and devices that use electric power and signals. Among the most important subjects in the field in the late 1980s are electric power and machinery, electronic circuits, control systems, computer design, superconductors, solid state electronics, medical imaging systems, robotics, lasers, radar, consumer electronics, and fiber optics.
Despite
its diversity, electrical engineering can be divided into four main
branches: electric
power
and machinery, electronics, communications and control, and
computers.
The field of electric power is concerned with the design and operation of systems for generating, transmitting, and distributing electric power. Engineers in this field have brought about several important developments since the late 1970s. One of these is the ability to transmit power at extremely high voltages in both the direct current (DC) and alternating current (AC) modes, reducing power losses proportionately. Another is the real-time control of power generation, transmission, and distribution, using computers to analyze the data fed back from the power system to a central station and thereby optimizing the efficiency of the system while it is in operation.
A
significant advance in the engineering of electric machinery has been
the introduction of electronic controls that enable AC motors to run
at variable speeds by adjusting the frequency of the current fed into
them. DC motors have also been made to run more efficiently this way.
Electronic engineering deals with the research, design, integration, and application of circuits and devices used in the transmission and processing of information. Information is now generated, transmitted, received, and stored electronically on a scale unprecedented in history, and there is every indication that the explosive rate of growth in this field will continue unabated.
Electronic engineers design circuits to perform specific tasks, such as amplifying electronic signals, adding binary numbers, and demodulating radio signals to recover the information they carry. Circuits are also used to generate waveforms useful for synchronization and timing, as in television, and for correcting errors in digital information, as in telecommunications.
Prior
to the 1960s, circuits consisted of separate electronic devices –
resistors, capacitors, inductors, and vacuum tubes – assembled on a
chassis and connected by wires to form a bulky package. Since then,
there has been a revolutionary trend toward integrating electronic
devices on a single tiny chip of silicon or some other
semi-conductive material. The complex task of manufacturing these
chips uses the most advanced technology, including computers,
electron-beam lithography, micro-manipulators, ion-beam implantation,
and ultraclean environments. Much of the research in electronics is
directed toward creating even smaller chips, faster switching of
components, and three-dimensional integrated circuits.
