- •Министерство образования и науки российской федерации федеральное агентство по образованию
- •Захарова ю.Ф. Дискретная математика и ее приложения
- •Введение
- •Глава 1. Введение в теорию множеств.
- •1.1. Основные определения.
- •1.2. Задание множеств
- •1.3. Операции над множествами
- •1.4. Разбиения и покрытия
- •1.5. Представление множеств в эвм.
- •1.5.1. Включение множеств.
- •1.5.2. Объединение множеств.
- •1.5.3. Пересечение множеств.
- •Глава 2. Булева алгебра.
- •2.1. Основные элементарные функции.
- •2.2. Основные элементарные тождества.
- •2.3. Формы представления булевых функций.
- •2.4. Минимизация булевых функций.
- •2.4.1. Метод Куайна.
- •2.4.2. Метод Карно.
- •Глава 3. Исчисление высказываний и исчисление предикатов.
- •3.1. Исчисление высказываний.
- •3.2. Исчисление предикатов.
- •Глава 4. Теория сжатия текстовой информации.
- •4.1. Метод Хаффмена
- •4.1.1. Общие положения
- •4.1.2. Краткое описание метода Хаффмена.
- •4.1.3. Пример использования метода Хаффмена.
- •4.2. Метод Зива Лемпеля (lz-метод)
- •4.2.1. Основные определения
- •4.2.2. Краткое описание lz-метода
- •4.2.3. Пример lz-метода
- •4.3. Метод Зива-Лемпеля-Велча (lzw-метод)
- •4.3.1. Общие положения
- •4.3.2. Краткое описание lzw-метода
- •4.3.3. Пример lzw-метода.
- •4.4. Метод Барроуза-Уиллера.
- •4.4.1. Общие положения.
- •4.4.2. 1 Этап. Преобразование Барроуза-Уилера.
- •4.4.3. 2 Этап. Mtf–метод.
- •4.4.4. 3 Этап. Статистический кодер.
- •4.4.5. Модификации различных этапов.
- •4.4.6. Сравнение алгоритмов сжатия на базе bwt с другими методами.
- •Глава 5. Теория сжатия графической информации. Введение.
- •5.2. Волновой метод (wavelet-метод)
- •5.2.1. Описание метода
- •5.2.2. Пример волнового метода
- •5.3. Дискретное косинус-преобразование (дкп-метод).
- •5.3.1. Описание метода.
- •5.3.2. Пример дкп-метода.
- •5.4. Классический алгоритм jpg.
- •5.5. Фрактальный алгоритм.
- •Глава 6. Введение в криптографию. Введение.
- •6.1. Методы перестановки
- •6.1.1. Матрицы
- •6.1.2. Маршруты Гамильтона
- •6.1.3. Электрический монтаж
- •6.1.4. Особенности перестановки
- •6.2. Методы подстановки
- •6.2.1. Вектор замен
- •6.2.2. Таблицы Вижинера
- •6.3. Метод замены. Использование алгебры матриц.
- •6.4. Аддитивные методы
- •6.5. Стеганология
- •6.6. Ключ. Основные понятия, связанные с ключом и алгоритмом.
- •6.6.1. Основные понятия.
- •6.6.2. Ключ.
- •6.6.3. Случайные и псевдослучайные числа.
- •6.6.4. Действия по шифрованию информации.
- •6.7. Блочные и поточные шифры.
- •6.8. Алгоритмы des, Triple des и их заменяющие.
- •6.8.2. Алгоритм Triple des
- •6.8.3. Коммерческие алгоритмы, заменившие des
- •6.9. Системы с открытым ключом.
- •6.10. Электронная подпись.
- •6.11. Взлом защищенных файлов.
- •6.11.1. Атака на ключ
- •6.11.2. Атака на алгоритм.
- •6.11.3. Скомпрометированный пароль.
- •6.11.4. Подделка открытых ключей.
- •6.11.5. Не до конца удаленные файлы.
- •6.11.6. Вирусы и закладки.
- •6.11.7. Виртуальная память.
- •6.11.8. Нарушение режима физической безопасности. Радиоатака. Фальшивые даты подписи.
- •6.11.10. Утечка информации в многопользовательской среде.
- •Содержание
- •Глава 6. Введение в криптографию. 1
2.4. Минимизация булевых функций.
2.4.1. Метод Куайна.
Рассмотрим некоторую функцию, СДНФ которой имеет следующий вид:
На
первом этапе минимизации исходную СДНФ
можно упростить за счет использования
закона склеивания, тогда получим:
.
При этом что одну и ту же конституенту (импликанту) можно склеивать с другими конституентами (импликантами) многократно, так как в логике Буля действует закон идемпотентности:
,
Поэтому любую конституенту можно размножить. Нa втором этапе воспользуемся таблицей Куайна (табл. 2), в соответствии с которой данный метод минимизации получил свое наименование — метод Куайна. В таблице по вертикали перечислены все полученные на первом этапе упрощения импликанты, а по горизонтали — исходные конституенты. Единица в табл. 2 стоит там, где импликанта “накрывает” конституенту. Дело в том, что конституента всегда может быть заменена импликантой или даже отдельным термом по закону поглощения:
Таблица 2
|
0100 |
1010 |
0110 |
1110 |
0101 |
0011 |
1011 |
0111 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 - 1 0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
- 1 1 0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
- 0 1 1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 - 1 1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
После заполнения таблицы Куайна у нас получилось так, что почти в каждой графе оказалось по две единицы; между тем достаточно иметь одну единицу в графе. Поэтому, по возможности, нужно исключить избыточные единицы. Выбор единиц производится из соображений минимальности числа термов (выбранные единицы обведены). В итоге оказалось, что можно обойтись только тремя импликантами вместо шести:
.
2.4.2. Метод Карно.
Карта Карно для четырех переменных представляет собой матрицу 4x4. Каждая клетка карты соответствует конституенте.
Заполненная карта (функция взята та же, что и в первом методе) имеет следующий вид
|
|
|
|
|
|
|
0 |
1 |
1 |
1 |
|
|
0 |
0 |
1 |
1 |
|
|
0 |
1 |
1 |
0 |
|
|
0 |
1 |
0 |
0 |
|
|
|
|
|
|
|
Согласно закону склеивания, две смежные конституенты с единичными значениями всегда можно объединить для получения соответствующей импликанты. Причем смежными считаются и те, которые лежат на границах карты. Какие именно единицы требуете. объединить для получения подходящей импликанты, легко определить визуально. Следует также помнить, что в соответствии с законом идемпотентности одна и та же единица табл. 4 может склеиваться с двумя или тремя смежными единицами.
При этом внешняя простота и наглядность минимизации логических функций с помощью карт Карно оборачивается сложной программой при реализации алгоритма на компьютере.

1 - -
0 1 -