- •Электронная научно-техническая база по вопросам энергосбрежения, инвестиционных и инновационных проектов содержание
- •1 Альтернативные виды топлива 6
- •2 Энергосбереигающие материалы 14
- •3 Энергосберегающее оборудование 46
- •3.8.26 Система пассивного охлаждения, удивляющая своей экономичностью 70
- •1Альтернативные виды топлива
- •1.1Аквазин
- •1.2Биометан из биогаза
- •1.3"Бактериальное" биотопливо
- •1.4Водород из солнечной энергии и воды
- •1.5Водород с помощью фотокатализа
- •1.6 Получение водорода из растений
- •1.7 Водоугольное топливо
- •1.6Дизельное топливо из переработанного мусора
- •1.7Диметиловый эфир
- •1.8Кулоновская энергосберегающая силовая униполярная энергетика
- •1.9Метановые дамбы
- •1.10Сажа как источник энергии
- •1.11Топливо из водяного пара
- •1.12Топливо из пластиковых отходов
- •1.13Экономайзеры
- •1.14Электричество из энергии падающих капель
- •1.15Энергетические плантации
- •2Энергосбереигающие материалы
- •2.1Аэрогель для теплоизоляции теплотрасс, оборудования и дома
- •2.2Аэрогель при изготовлении одежды
- •2.3Базальтовый утеплитель
- •2.4Биополимер для охлаждения и теплоизоляции
- •2.5Вспененные полимеры для теплоизоляции
- •2.6Вспученный вермикулит
- •2.7Газонаполненный пенополиэтилен
- •2.8Геокар – земляной утеплитель
- •2.9Гибкие связи из базальтопластика
- •2.10Инфракрасная пленка для теплых полов, стен и крыш
- •2.11Керамзит
- •2.12Минеральная вата
- •2.13Пеннополистирол
- •2.14Пеностекло
- •2.15Перлит для утепления дома
- •2.16Подпольное отопление
- •2.17Солома
- •2.18Стекловата
- •2.19Стена-обогреватель
- •2.20Стеклянные кровли
- •2.21Сэндвич-панели - технология в строительстве коттеджей
- •2.22Термодревесина
- •2.23Теплоизоляционные панели
- •2.24Токопроводящие смазки
- •2.25Фенолрезольный пенопласт
- •2.26Черепица-хамелеон
- •2.27Эковата
- •2.28Экструзионный пенополистирол
- •2.29Термоэлектрический материал
- •2.30Энергосберегающие материалы для окон и дверей
- •2.30.1Вилатерм, способ утеплить окна к зиме
- •2.30.2Карусельные или револьверные двери
- •2.30.3 Рафшторы
- •2.30.4Роллеты на окнах
- •2.30.5Солнечные микро-батареи для энергетических окон
- •2.30.6Теплоизоляция окон
- •2.30.7Уплотнители для окон и дверей: шведская технология
- •2.30.8Утепления оконных систем
- •2.30.9Фотоэлементы для окон-энергогенераторов
- •2.30.10 Электрохромные окна
- •2.31Энергосберегающие материалы для трубопроводов
- •2.31.1Антикоррозионные составы для повышения надежности трубопроводов
- •2.31.2Асбестоцементные трубы в теплоснабжении
- •2.31.3Бесканальные теплотрассы
- •2.31.4Греющие кабели
- •2.31.5Материалы для изоляции трубопроводов
- •2.31.6Металлопластиковая труба или труба из полипропилена
- •2.31.7Съемные панели для теплоизоляции клапанов и фитингов
- •2.31.8Трубы в системах водоснабжения и отопления
- •3Энергосберегающее оборудование
- •3.1Автомобиль на воздухе
- •3.2Автомобиль на пару
- •3.3Бытовые приборы
- •3.3.1Кондиционеры
- •3.3.2Печь на солнечной энергии
- •3.3.3Светодиоды в мониторах и телевизорах
- •3.3.4С олнечная батарея для зарядки ноутбука
- •3.3.5Фотоаппарат на солнечных батареях
- •3.3.6Экономия электроэнергии при зарядке телефона
- •3.4Генератор энергии, использующий трибоэлектрический эффект
- •3.5Инновационная система, использующая морские водоросли
- •3.7.2Ветроустановка мгновенной сборки
- •3.7.3Водяной насос на солнечных батареях
- •3.7.4Воздушный змей, генерирующий энергию
- •3.7.5Дороги, производящие электричество
- •3.7.6Зарядное устройство для мобильного телефона на основе воздушно-алюминиевых топливных элементов
- •3.7.7Интеллектуальная ветроустановка
- •3.7.8Осмотическая электростанция
- •3.7.9Солнечные панели вдоль шоссе
- •3.7.10Тригенерация: тепло, электричество и холод от одного энергогенератора
- •3.7.11Энергия толпы
- •3.7.12Электростанция под облаками
- •3.7.13Энергетический браслет Dyson
- •3.8Отопление, вентиляция, кондиционирования
- •3.8.1Антиобледенительные системы
- •3.8.2Балансировочные клапаны
- •3.8.3Вентиляция
- •3.8.4Вихревой теплогенератор
- •3.8.5Газовые инфракрасные обогреватели
- •3.8.6Газовые теплогенераторы
- •3.8.7Газовая турбина без использования воды
- •3.8.8Индивидуальный тепловой пункт
- •3.8.9Кондиционирование помещений с помощью льда, созданного ветром
- •3.8.10Кондиционер на солнечной энергии
- •3.8.11Косвенно-испарительное охлаждение
- •3.8.12Котлы на биомассе
- •3.8.13Краска для стен заменяющая и кондиционер, и обогреватель.
- •3.8.14Печка, производящая электричество
- •3.8.15Полиэтиленовые радиаторы
- •3.8.16Приточно-вытяжные системы с рекуперацией тепла
- •3.8.17Солнечные окна источник тепла
- •3.8.18Тепловые завесы
- •3.8.19Тепловые пушки
- •3.8.20Теплонакопители
- •3.8.21Термомайзеры
- •3.8.22Терморегуляторы или радиаторные термостаты
- •3.8.23Утилизация сбросного тепла вытяжного воздуха
- •3.8.24Электрический водяной пол
- •3.8.25Электродные котлы в автономной системе отопления
- •3.8.26Система пассивного охлаждения, удивляющая своей экономичностью
- •3.9Офисная техника
- •3.9.1Батарея для ноутбука
- •3.9.2Bluetooth технология
- •3.9.3Дисплеи с электроувлажнением
- •3.9.4Дисплеи электрофлюидные
- •3.9.5Мониторы с нулевым потреблением энергии
- •3.9.6Мышь, которая питается кинетической энергией
- •3.10Приборы освещения
- •3.10.1Дороги из солнечного кирпича
- •3.10.2Интеллектуальные системы уличного освещения
- •3.10.3Инфракрасные датчики движения и присутствия
- •3.10.4Комбинированное освещение в квартире
- •3.10.5Металлогалогенные светильники
- •3.10.6Освещения помещений дневным светом
- •3.10.7Освещение помещений с высотой потолков свыше 6 метров
- •3.10.8Освещение улиц мусором
- •3.10.9Регулируемый светодиодный многолучевой светильник
- •3.10.10 Самозаряжающийся фонарик
- •3.10.11 Световые фонари в системах естественного освещения
- •3.10.12 Светодиоды в архитектурной подсветке зданий
- •3.10.13 Сверхъяркий чип
- •3.10.14 Светорегуляторы
- •3.10.15 Система "искусственного естественного освещения"
- •3.10.16 Солнечный шар для уличного освещения
- •3.10.17 "Солнечные" окна для крыш
- •3.10.18 Фонарь с батареей воздушно-алюминиевых топливных элементов и криптоновым источником света
- •3.10.19 Фотосинтезирующая лампа
- •3.10.20 Получение енерги с помощью фотосинтеза
- •3.10.21 Электролюминесцентные источники света
- •3.11Приборы учета
- •3.11.1Умный счетчик
- •3.12Промышленное (специальное) оборудование
- •3.12.1Биоэнергетические установки
- •3.12.2Воздушной герметичность изоляции ограждающих конструкций
- •3.12.3Газопоршневые установки с утилизацией тепловой энергии
- •3.12.4Гидродинамический тепловой насос
- •3.12.5Гидромагнитные системы
- •3.12.6Квантовые двигатели
- •3.12.7Мусорные контейнеры, работающие на солнечной энергии
- •3.12.8Оптимизация расхода пара в деаэраторе
- •3.12.9Очистители воды на солнечных батареях
- •3.12.10Паровая винтовая машина
- •3.12.11Пьезоэлектрический преобразователь
- •3.12.12Рекуперативные и регенеративные горелки
- •3.12.13Система предотвращения протечек воды
- •3.12.14Суперкомпьютер, работающий на горячей воде
- •3.12.15Техника трафаретной печати для солнечных элементов
- •3.12.16Тригенерационная энерготехнологическая установка
- •3.12.17Устройство для преобразования и накопления солнечной энергии
- •3.12.18Электроприводы для оптимизации расхода энергии
- •3.12.19Электростанция на плаву
- •3.12.20Энергия из очистных сооружений
- •3.12.21Энергосберегающий водоструйный элеватор
- •3.13Сантехника
- •3.13.1Новая конструкция душа сократит использование воды на 50%
- •3.13.2 Полимер, вырабатывающий электроэнергию
- •3.13.3 Вакуумная канализация снижает потребление воды
- •3.13.4Водосберегающие насадки для душа
- •3.13.5Помощник в экономии воды
- •3.13.6Системы водоснабжения и канализации малоэтажных зданий
- •3.13.7Смеситель с водоэкономной насадкой
- •3.13.8Унитаз, который генерирует электроэнергию
- •3.13.1Унитаз, экономящий воду
- •3.13.2 Экономная стиральная машина
- •3.14Лазерный электрогенератор
- •3.15Тепловое зеркало
- •3.16Энергетический потенциал тепла накапливаемого в асфальтовом покрытии
- •3.17Электрохимический генератор
3.8.8Индивидуальный тепловой пункт
Блочно-модульный индивидуальный тепловой пункт - это установка, используемая для передачи тепловой энергии от внешней тепловой сети к различным системам теплоснабжения потребителя.
БИТП состоит из модуля отопления, горячего водоснабжения и узла учета потребления тепловой энергии. Использование модульной конструкции позволяет уменьшить временные затраты на изготовление и монтаж теплового пункта. Помимо пластинчатых теплообменных аппаратов в состав теплового пункта входят:
Автоматическая электронная система регулирования контуров отопления
Циркуляционные и повысительные насосы контуров отопления и ГВС
Контрольно-измерительные приборы
Запорно-регулирующая арматура
Узел учета тепловой энергии
Магнито-сетчатые фильтры и устройства магнитной обработки воды
Система автоматического управления и диспетчеризации.
3.8.9Кондиционирование помещений с помощью льда, созданного ветром
Специальная система подобно гигантскому аккумулятору сохраняет энергию, выработанную в непиковые ночные часы, используя ее для получения льда. Впоследствии этот лед охлаждает воздух в помещениях в жаркие дневные часы.
Система Icebank, по утверждению компании-производителя, способна снизить энергозатраты на 20–40%, что также сократит вредные выбросы электростанций. Ее изготовление не требует использования лития или других редкоземельных материалов. Нужен только высокоскоростной аппарат для производства льда, что делает систему очень рентабельной..
Наиболее эффективно устройство используется для аккумулирования энергии такого источника как ветер, потому что во многих областях порывы ветра ночью сильнее, чем днем. Таким образом, большая часть энергии, выработанной ночью, теряется впустую. Система Icebank способна решить эту проблему и направить полученные мощности на полезное дело. Избыточная энергия преобразуется в лед, сохраняется в системе и затем используется для кондиционирования помещений.
Каждая цистерна Icebank представляет собой теплообменник из полиэтиленовых труб, расположенных по спирали и окруженных водой. Внешняя оболочка цистерны также сделана из полиэтилена и хорошо изолирована. Модульность цистерн позволяет собрать такую систему, которая может предоставить как полную, так и частичную разгрузку сети в часы пик.
3.8.10Кондиционер на солнечной энергии
Кондиционирования на солнечной энергии имеет оптимальный 85-процентный коэффициент преобразования тепла в холод, а степень утилизации им энергии в 27 раз больше, чем это было возможно в обычном водонагревательном элементе, работающем от сети.
Новая разработка способна в течении суток непрерывно работать в режиме охлаждения и обогрева или использоваться для в системе горячего водоснабжения. Если солнечного света окажется недостаточно, в устройстве предусмотрена возможность использования природного газа в качестве альтернативного источника.
Помимо экономии электроэнергии и бюджетов владельцев кондиционер также способствует снижению выбросов углекислого газа.
3.8.11Косвенно-испарительное охлаждение
Технология охлаждения испарением, основанная на обдувании воздухом влажной поверхности, используется уже давно. Метод, называемый «косвенно-испарительным охлаждением», предполагает разделение осушающего воздуха на два потока, разделенных полимерной мембраной. один из этих потоков взаимодействует с водой, что делает его более холодным и влажным. Холодный воздух охлаждает мембрану, которая, в свою очередь, охлаждает воздух по другую сторону, не увлажняя его.
Но данный метод неэффективен при высокой атмосферной влажности: если в воздухе уже содержится большое количество водяного пара, испарение воды будет незначительным, следовательно, и температура исходящего из охладителя воздушного потока понизится ненамного.
DEVap решает проблему кондиционирования при повышенной влажности, используя материал-осушитель, поглощающий влагу. В качестве «осушителя» применяется раствор хлорида лития или хлорида кальция повышенной концентрации (44% соли от общего объема). В такой установке еще одна мембрана отделяет осушитель от проходящего через канал воздуха. Полимерная мембрана пронизана порами диаметром 1-3 мкм, что вполне достаточно, чтобы пропускать водяной пар и при этом удерживать хлориды на месте. Мембрана покрыта похожим на тефлон веществом, обладающим водоотталкивающими свойствами.
Осушитель «вытягивает» влагу из воздушного потока, оставляя его сухим и теплым. А затем «подготовленный» воздух попадает в систему косвенно-испарительного охлаждения.
