- •Электронная научно-техническая база по вопросам энергосбрежения, инвестиционных и инновационных проектов содержание
- •1 Альтернативные виды топлива 6
- •2 Энергосбереигающие материалы 14
- •3 Энергосберегающее оборудование 46
- •3.8.26 Система пассивного охлаждения, удивляющая своей экономичностью 70
- •1Альтернативные виды топлива
- •1.1Аквазин
- •1.2Биометан из биогаза
- •1.3"Бактериальное" биотопливо
- •1.4Водород из солнечной энергии и воды
- •1.5Водород с помощью фотокатализа
- •1.6 Получение водорода из растений
- •1.7 Водоугольное топливо
- •1.6Дизельное топливо из переработанного мусора
- •1.7Диметиловый эфир
- •1.8Кулоновская энергосберегающая силовая униполярная энергетика
- •1.9Метановые дамбы
- •1.10Сажа как источник энергии
- •1.11Топливо из водяного пара
- •1.12Топливо из пластиковых отходов
- •1.13Экономайзеры
- •1.14Электричество из энергии падающих капель
- •1.15Энергетические плантации
- •2Энергосбереигающие материалы
- •2.1Аэрогель для теплоизоляции теплотрасс, оборудования и дома
- •2.2Аэрогель при изготовлении одежды
- •2.3Базальтовый утеплитель
- •2.4Биополимер для охлаждения и теплоизоляции
- •2.5Вспененные полимеры для теплоизоляции
- •2.6Вспученный вермикулит
- •2.7Газонаполненный пенополиэтилен
- •2.8Геокар – земляной утеплитель
- •2.9Гибкие связи из базальтопластика
- •2.10Инфракрасная пленка для теплых полов, стен и крыш
- •2.11Керамзит
- •2.12Минеральная вата
- •2.13Пеннополистирол
- •2.14Пеностекло
- •2.15Перлит для утепления дома
- •2.16Подпольное отопление
- •2.17Солома
- •2.18Стекловата
- •2.19Стена-обогреватель
- •2.20Стеклянные кровли
- •2.21Сэндвич-панели - технология в строительстве коттеджей
- •2.22Термодревесина
- •2.23Теплоизоляционные панели
- •2.24Токопроводящие смазки
- •2.25Фенолрезольный пенопласт
- •2.26Черепица-хамелеон
- •2.27Эковата
- •2.28Экструзионный пенополистирол
- •2.29Термоэлектрический материал
- •2.30Энергосберегающие материалы для окон и дверей
- •2.30.1Вилатерм, способ утеплить окна к зиме
- •2.30.2Карусельные или револьверные двери
- •2.30.3 Рафшторы
- •2.30.4Роллеты на окнах
- •2.30.5Солнечные микро-батареи для энергетических окон
- •2.30.6Теплоизоляция окон
- •2.30.7Уплотнители для окон и дверей: шведская технология
- •2.30.8Утепления оконных систем
- •2.30.9Фотоэлементы для окон-энергогенераторов
- •2.30.10 Электрохромные окна
- •2.31Энергосберегающие материалы для трубопроводов
- •2.31.1Антикоррозионные составы для повышения надежности трубопроводов
- •2.31.2Асбестоцементные трубы в теплоснабжении
- •2.31.3Бесканальные теплотрассы
- •2.31.4Греющие кабели
- •2.31.5Материалы для изоляции трубопроводов
- •2.31.6Металлопластиковая труба или труба из полипропилена
- •2.31.7Съемные панели для теплоизоляции клапанов и фитингов
- •2.31.8Трубы в системах водоснабжения и отопления
- •3Энергосберегающее оборудование
- •3.1Автомобиль на воздухе
- •3.2Автомобиль на пару
- •3.3Бытовые приборы
- •3.3.1Кондиционеры
- •3.3.2Печь на солнечной энергии
- •3.3.3Светодиоды в мониторах и телевизорах
- •3.3.4С олнечная батарея для зарядки ноутбука
- •3.3.5Фотоаппарат на солнечных батареях
- •3.3.6Экономия электроэнергии при зарядке телефона
- •3.4Генератор энергии, использующий трибоэлектрический эффект
- •3.5Инновационная система, использующая морские водоросли
- •3.7.2Ветроустановка мгновенной сборки
- •3.7.3Водяной насос на солнечных батареях
- •3.7.4Воздушный змей, генерирующий энергию
- •3.7.5Дороги, производящие электричество
- •3.7.6Зарядное устройство для мобильного телефона на основе воздушно-алюминиевых топливных элементов
- •3.7.7Интеллектуальная ветроустановка
- •3.7.8Осмотическая электростанция
- •3.7.9Солнечные панели вдоль шоссе
- •3.7.10Тригенерация: тепло, электричество и холод от одного энергогенератора
- •3.7.11Энергия толпы
- •3.7.12Электростанция под облаками
- •3.7.13Энергетический браслет Dyson
- •3.8Отопление, вентиляция, кондиционирования
- •3.8.1Антиобледенительные системы
- •3.8.2Балансировочные клапаны
- •3.8.3Вентиляция
- •3.8.4Вихревой теплогенератор
- •3.8.5Газовые инфракрасные обогреватели
- •3.8.6Газовые теплогенераторы
- •3.8.7Газовая турбина без использования воды
- •3.8.8Индивидуальный тепловой пункт
- •3.8.9Кондиционирование помещений с помощью льда, созданного ветром
- •3.8.10Кондиционер на солнечной энергии
- •3.8.11Косвенно-испарительное охлаждение
- •3.8.12Котлы на биомассе
- •3.8.13Краска для стен заменяющая и кондиционер, и обогреватель.
- •3.8.14Печка, производящая электричество
- •3.8.15Полиэтиленовые радиаторы
- •3.8.16Приточно-вытяжные системы с рекуперацией тепла
- •3.8.17Солнечные окна источник тепла
- •3.8.18Тепловые завесы
- •3.8.19Тепловые пушки
- •3.8.20Теплонакопители
- •3.8.21Термомайзеры
- •3.8.22Терморегуляторы или радиаторные термостаты
- •3.8.23Утилизация сбросного тепла вытяжного воздуха
- •3.8.24Электрический водяной пол
- •3.8.25Электродные котлы в автономной системе отопления
- •3.8.26Система пассивного охлаждения, удивляющая своей экономичностью
- •3.9Офисная техника
- •3.9.1Батарея для ноутбука
- •3.9.2Bluetooth технология
- •3.9.3Дисплеи с электроувлажнением
- •3.9.4Дисплеи электрофлюидные
- •3.9.5Мониторы с нулевым потреблением энергии
- •3.9.6Мышь, которая питается кинетической энергией
- •3.10Приборы освещения
- •3.10.1Дороги из солнечного кирпича
- •3.10.2Интеллектуальные системы уличного освещения
- •3.10.3Инфракрасные датчики движения и присутствия
- •3.10.4Комбинированное освещение в квартире
- •3.10.5Металлогалогенные светильники
- •3.10.6Освещения помещений дневным светом
- •3.10.7Освещение помещений с высотой потолков свыше 6 метров
- •3.10.8Освещение улиц мусором
- •3.10.9Регулируемый светодиодный многолучевой светильник
- •3.10.10 Самозаряжающийся фонарик
- •3.10.11 Световые фонари в системах естественного освещения
- •3.10.12 Светодиоды в архитектурной подсветке зданий
- •3.10.13 Сверхъяркий чип
- •3.10.14 Светорегуляторы
- •3.10.15 Система "искусственного естественного освещения"
- •3.10.16 Солнечный шар для уличного освещения
- •3.10.17 "Солнечные" окна для крыш
- •3.10.18 Фонарь с батареей воздушно-алюминиевых топливных элементов и криптоновым источником света
- •3.10.19 Фотосинтезирующая лампа
- •3.10.20 Получение енерги с помощью фотосинтеза
- •3.10.21 Электролюминесцентные источники света
- •3.11Приборы учета
- •3.11.1Умный счетчик
- •3.12Промышленное (специальное) оборудование
- •3.12.1Биоэнергетические установки
- •3.12.2Воздушной герметичность изоляции ограждающих конструкций
- •3.12.3Газопоршневые установки с утилизацией тепловой энергии
- •3.12.4Гидродинамический тепловой насос
- •3.12.5Гидромагнитные системы
- •3.12.6Квантовые двигатели
- •3.12.7Мусорные контейнеры, работающие на солнечной энергии
- •3.12.8Оптимизация расхода пара в деаэраторе
- •3.12.9Очистители воды на солнечных батареях
- •3.12.10Паровая винтовая машина
- •3.12.11Пьезоэлектрический преобразователь
- •3.12.12Рекуперативные и регенеративные горелки
- •3.12.13Система предотвращения протечек воды
- •3.12.14Суперкомпьютер, работающий на горячей воде
- •3.12.15Техника трафаретной печати для солнечных элементов
- •3.12.16Тригенерационная энерготехнологическая установка
- •3.12.17Устройство для преобразования и накопления солнечной энергии
- •3.12.18Электроприводы для оптимизации расхода энергии
- •3.12.19Электростанция на плаву
- •3.12.20Энергия из очистных сооружений
- •3.12.21Энергосберегающий водоструйный элеватор
- •3.13Сантехника
- •3.13.1Новая конструкция душа сократит использование воды на 50%
- •3.13.2 Полимер, вырабатывающий электроэнергию
- •3.13.3 Вакуумная канализация снижает потребление воды
- •3.13.4Водосберегающие насадки для душа
- •3.13.5Помощник в экономии воды
- •3.13.6Системы водоснабжения и канализации малоэтажных зданий
- •3.13.7Смеситель с водоэкономной насадкой
- •3.13.8Унитаз, который генерирует электроэнергию
- •3.13.1Унитаз, экономящий воду
- •3.13.2 Экономная стиральная машина
- •3.14Лазерный электрогенератор
- •3.15Тепловое зеркало
- •3.16Энергетический потенциал тепла накапливаемого в асфальтовом покрытии
- •3.17Электрохимический генератор
2.8Геокар – земляной утеплитель
Геокар – материал для теплоизоляции, имеющий уникальные свойства. Он создан из природного материала – торфа, поэтому считается экологически чистым и абсолютно безвредным.
Использовать теплоизоляционный материал Геокар можно при строительстве коттеджей, и при возведении многоэтажных зданий. Он может использоваться для теплоизоляции перегородок, как межквартирных, так и межкомнатных. Отлично утепляет полы, перекрытия и стены при ремонте старых конструкций и при строительстве новых домов.
Преимущества Геокара:
1. Его показатели теплоизоляции уникальны. За счет очень низкой теплопроводности, всего 0,047-0,08 Вт/м К, он обеспечивает значительное энергосбережение.
2. Длительный срок службы. По мнению экспертов, он способен прослужить более 75 лет.
3. Геокар является экологически чистым материалом, так как выпускается на основе торфа с добавлением древесной стружки.
4. Геокар имеет бактерицидные свойства. Это естественно, так как торф является натуральным антисептиком и способствует уничтожению болезнетворных бактерий.
5. Способствует снижению общего уровня радиации, проникающей в помещение. Проведенные исследования показали, что Геокар снижает уровень радиации в пять раз.
6. Геокар обладает отличными звукоизоляционными свойствами. Его индекс звукоизоляции равняется Дб-53 при 1000 Гц.
7. Геокар превосходно поглощает газы и неприятные запахи. Один килограмм торфа может нейтрализовать около пятидесяти граммов аммиака.
8. Торфяные блоки не гниют и не пригодны для жизни насекомых.
9. Повышается уровень комфортности жилья. Это происходит из-за того, что в нем очень легко дышится, всегда свежий и чистый воздух, не бывает ни жары, ни холода. Геокар создает прекрасную теплоизоляцию еще и за счет того, что в точке росы образуется иней, а не ледяная корка.
10. Геокар жесткий, что позволяет использовать его для строительства несущих стен, если речь идет о малоэтажном строительстве. Еще одно достоинство, которое имеет неоспоримую ценность – простота обработки и подгонки, которая способствует выбору оптимальных решений. И, пожалуй, самым важным достоинством Геокара является низкая стоимость.
Кроме перечисленного выше, Геокар обладает и дополнительными ценными качествами. Например, он идеально подходит для использования в сельскохозяйственных постройках, в которых планируется содержание животных. Коровы, свиньи и другие животные выделяют некоторое количество аммиака, который быстро и безопасно поглощается торфом. В результате в помещении нет ядовитых паров, соблюдается санитарный баланс. Если же использовать торфоблоки в овощехранилищах, срок хранения фруктов и овощей значительно увеличивается.
2.9Гибкие связи из базальтопластика
Гибкие связи используются в строительстве и предназначены для соединения несущей стены с облицовочным слоем через утеплитель в системе трехслойных стен.
Как видно на рис. 2.8.1, роль гибкой связи в конструкции очень велика: она соединяет элементы «несущая стена – утеплитель – внешняя стена» в единое целое и отвечает за единство конструкции. Поэтому от прочности гибкой связи зависит прочность соединения стен конструкции и, следовательно, надежность всего строительного объекта.
Рис 2.8.1. Схема трехслойной стены
Трехслойная стена:
1.Наружная часть кирпичной стены.
2. Композитная гибкая связь
3. Утеплитель.
4. Воздушный зазор.
5. Наружная часть кирпичной стены.
Базальтопластиковые гибкие связи представляют собой стержни круглого сечения из базальтовых волокон, покрытые полимерным связующим.
Базальт – это горная вулканическая порода. Для получения базальтового волокна дробленый щебень базальта плавят при температуре + 1400ºC и вытягивают в тонкую нить. При добавлении в базальтовую нить полимерных связующих получают современный композиционный материал – базальтопластик.
При сравнении базальтопластиковой арматуры и арматуры из других материалов видно, что прочность на растяжение у базальтопластиковой арматуры в 2,5 раза выше, а теплопроводность в 100 раз ниже, чем у углеродистой стали. Это говорит о том, что базальтопластик пропускает в 100 раз меньше тепла. Также базальтопластиковая арматура имеет низкую плотность, поэтому связи из данного материала в 4 раза легче стальных. При нормальных условиях эксплуатации базальтопластиковый стержень сохраняет все свои физико-механические свойства в течение 100 лет.
Так как базальтопластиковая гибкая связь абсолютно коррозионно- и щелочестойкая (не ржавеет и не разрушается), то при ее использовании повышается надежность здания, увеличивается межремонтный период и значительно снижаются затраты на содержание самого здания.
При применении базальтопластиковой арматуры в строительных дюбелях и в качестве гибких связей не возникает «мостиков холода». Это происходит благодаря тому, что данные связи обладают низкой теплопроводностью (в 100 раз ниже стали) и при их использовании происходит снижение теплопотерь до 34%.
Следует отметить, что по европейским стандартам в проекте «Пассивный дом» («Passivhaus» – строительство энергоэффективных домов с использованием гибких базальтопластиковых связей) обогрев трехкомнатного дома площадью 118 кв. м обходится в 15 кВт/м2/год. Причем данный показатель достигается только при использовании гибких связей из базальтопластика. В России же обогрев трехкомнатного дома составляет 150 кВт/м2/год при аналогичных климатических условиях. Данные показатели подтверждают, что использование базальтопластиковых гибких связей экономически целесообразно.
Таким образом, базальтопластик – это эффективный и надежный материал для производства гибких связей и строительных дюбелей, сочетающий в себе такие качества, как легкость, прочность, низкую теплопроводность, щелочную и коррозионную стойкость.
